deberta_EconomieCirculaire
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0395
- Accuracy: 0.9917
- F1: 0.9917
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.3293 | 1.0 | 98 | 0.3956 | 0.8908 | 0.8910 |
0.3897 | 2.0 | 196 | 0.1663 | 0.9575 | 0.9576 |
0.2224 | 3.0 | 294 | 0.1221 | 0.9677 | 0.9679 |
0.1787 | 4.0 | 392 | 0.0733 | 0.9821 | 0.9821 |
0.0979 | 5.0 | 490 | 0.0419 | 0.9888 | 0.9888 |
0.0838 | 6.0 | 588 | 0.0322 | 0.9914 | 0.9914 |
0.0534 | 7.0 | 686 | 0.0399 | 0.9891 | 0.9891 |
0.0465 | 8.0 | 784 | 0.0395 | 0.9917 | 0.9917 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Ludo33/deberta_EconomieCirculaire
Base model
microsoft/deberta-v3-base