|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: BERT_with_preprocessing_grid_search |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BERT_with_preprocessing_grid_search |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9426 |
|
- Precision: 0.8396 |
|
- Recall: 0.8182 |
|
- F1: 0.8282 |
|
- Accuracy: 0.8655 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.9585 | 1.0 | 510 | 0.5849 | 0.7825 | 0.8293 | 0.8002 | 0.8473 | |
|
| 0.4334 | 2.0 | 1020 | 0.6323 | 0.8394 | 0.8127 | 0.8226 | 0.8625 | |
|
| 0.281 | 3.0 | 1530 | 0.5389 | 0.8259 | 0.8476 | 0.8348 | 0.8704 | |
|
| 0.2117 | 4.0 | 2040 | 0.7155 | 0.8381 | 0.8243 | 0.8297 | 0.8675 | |
|
| 0.1556 | 5.0 | 2550 | 0.6981 | 0.8420 | 0.8411 | 0.8414 | 0.8729 | |
|
| 0.1216 | 6.0 | 3060 | 0.9238 | 0.8441 | 0.8089 | 0.8237 | 0.8606 | |
|
| 0.108 | 7.0 | 3570 | 0.8514 | 0.8334 | 0.8215 | 0.8270 | 0.8645 | |
|
| 0.0817 | 8.0 | 4080 | 0.8539 | 0.8341 | 0.8245 | 0.8288 | 0.8660 | |
|
| 0.0659 | 9.0 | 4590 | 0.9233 | 0.8441 | 0.8202 | 0.8313 | 0.8655 | |
|
| 0.0588 | 10.0 | 5100 | 0.9426 | 0.8396 | 0.8182 | 0.8282 | 0.8655 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|