Loriiis's picture
My first commit
c77da3c
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2184641b80>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2184641c10>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2184641ca0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2184641d30>",
"_build": "<function ActorCriticPolicy._build at 0x7f2184641dc0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f2184641e50>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2184641ee0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f2184641f70>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2184645040>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21846450d0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2184645160>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f218463d9c0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000.0,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1670503468466855551,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABo5Er32lGu68i3CujPDSbS/S7m67brgOQAAgD8AAIA/GvUQvcNVELq6epY3z/p6tP+ChbtrmbC2AACAPwAAgD8zkGA+1+koP2LdXr1rjNG+cDdxPXqIJL0AAAAAAAAAAM2nrjxcV366r9knOT5mIzQqfO86qjJEuAAAgD8AAIA/AB41PFyTLboLqOE6D7KLNZ3TZrpLcgC6AACAPwAAgD/NuJk7hePTuWe1kzu3OR02yrVZOpUnq7oAAIA/AACAPzPbcryF6925DbY1un7Xa7Uuqxs7LedSOQAAgD8AAIA/MzbEPUStPj7eV187Kxk7vkkefTufW8S7AAAAAAAAAADmsV0+pBKoPs/QD751roC+FgALPPkZQ70AAAAAAAAAADPp9Ty5lVM/g73PvJpkwL4mP+c8+BDcvAAAAAAAAAAATZ4LPeEgl7oq1mu7d6fGM+XgOboPRog6AACAPwAAgD+tT1C+/HuVP7sV3r6OJdW+jt6Evuh8Cr4AAAAAAAAAAOZm2z0fHem5FsEVOJr9fjFMlwa6BV8xtwAAgD8AAIA/5qtEvRQ0oLp37Qg5gC8CNMsOsziWlx24AACAPwAAgD/NV568KcxfukOPrDmwrYQ2OZ0yO19rxrgAAIA/AACAP0B+rD32aGG6OLviuZGEhDScDCM7kgziswAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRdeFHxwnZECUhpRSlIwBbJRN6AOMAXSUR0CVBPCK77KrdX2UKGgGaAloD0MIUvLqHAOYYECUhpRSlGgVTegDaBZHQJUIu/TLGJh1fZQoaAZoCWgPQwholgSoKRBmQJSGlFKUaBVN6ANoFkdAlQm1Bt1p03V9lChoBmgJaA9DCBgJbTmXjWVAlIaUUpRoFU3oA2gWR0CVCucAR02cdX2UKGgGaAloD0MInu3RG+7rY0CUhpRSlGgVTegDaBZHQJUOL3Fkxyp1fZQoaAZoCWgPQwjVdhN8UyBjQJSGlFKUaBVN6ANoFkdAlRVisGPgenV9lChoBmgJaA9DCHF2a5kMOGdAlIaUUpRoFU3oA2gWR0CVF4hxHXmOdX2UKGgGaAloD0MIskgT7wBNX0CUhpRSlGgVTegDaBZHQJUZECOmzjZ1fZQoaAZoCWgPQwjMejGUk49hQJSGlFKUaBVN6ANoFkdAlRpk9lmOEXV9lChoBmgJaA9DCEpgcw6e6mVAlIaUUpRoFU3oA2gWR0CVI5FWXC0odX2UKGgGaAloD0MITMEaZ1OSY0CUhpRSlGgVTegDaBZHQJUndWzWwvB1fZQoaAZoCWgPQwhiLxSwnbRlQJSGlFKUaBVN6ANoFkdAlTAkVrRBvHV9lChoBmgJaA9DCKFoHsAiHmBAlIaUUpRoFU3oA2gWR0CVN6QC0WuYdX2UKGgGaAloD0MIX+/+eK/vYkCUhpRSlGgVTegDaBZHQJU6Csny/bl1fZQoaAZoCWgPQwhAwjBgyYxjQJSGlFKUaBVN6ANoFkdAlU9iFPBSDXV9lChoBmgJaA9DCK2h1F5EXF1AlIaUUpRoFU3oA2gWR0CVU8SKm8/VdX2UKGgGaAloD0MIg/xs5Dr4YUCUhpRSlGgVTegDaBZHQJVZmUILPUt1fZQoaAZoCWgPQwjM7PMYZVNkQJSGlFKUaBVN6ANoFkdAlV0oRywOfHV9lChoBmgJaA9DCOyGbYuyi2FAlIaUUpRoFU3oA2gWR0CVXgwW3z+WdX2UKGgGaAloD0MIMX2vIThZYUCUhpRSlGgVTegDaBZHQJVfMESuhbp1fZQoaAZoCWgPQwhXBtUGp6tiQJSGlFKUaBVN6ANoFkdAlWJ1VktmMHV9lChoBmgJaA9DCKqezD/6BjBAlIaUUpRoFU0GAWgWR0CVaJwDvE0jdX2UKGgGaAloD0MIN4lBYGWYYkCUhpRSlGgVTegDaBZHQJVpIRHww0x1fZQoaAZoCWgPQwjnNXaJanFkQJSGlFKUaBVN6ANoFkdAlWqv114gR3V9lChoBmgJaA9DCAsMWd3qhWJAlIaUUpRoFU3oA2gWR0CVbB2aUiY+dX2UKGgGaAloD0MI1jcwuVEtZECUhpRSlGgVTegDaBZHQJVtPbfxc3V1fZQoaAZoCWgPQwirWWd8X8JfQJSGlFKUaBVN6ANoFkdAlXNdcGC7LHV9lChoBmgJaA9DCLQfKSJDY2NAlIaUUpRoFU3oA2gWR0CVdeAcT8HfdX2UKGgGaAloD0MIM0+uKZBuY0CUhpRSlGgVTegDaBZHQJV+GptJnQJ1fZQoaAZoCWgPQwjNeFvpNWdnQJSGlFKUaBVN6ANoFkdAlYYbTQVsUXV9lChoBmgJaA9DCGEW2jnNjGNAlIaUUpRoFU3oA2gWR0CViJtHxz7udX2UKGgGaAloD0MISWdg5OVkYECUhpRSlGgVTegDaBZHQJWLGlTFVDN1fZQoaAZoCWgPQwgPKQZINH1lQJSGlFKUaBVN6ANoFkdAlaLgpe/pMnV9lChoBmgJaA9DCGTo2EGlmGFAlIaUUpRoFU3oA2gWR0CVrcIacZtOdX2UKGgGaAloD0MIWrvtQnPRYkCUhpRSlGgVTegDaBZHQJWur5hz/6x1fZQoaAZoCWgPQwidu10vTbdkQJSGlFKUaBVN6ANoFkdAla/JJkGzKXV9lChoBmgJaA9DCLM/UG5bxWVAlIaUUpRoFU3oA2gWR0CVswpHqeK9dX2UKGgGaAloD0MICAYQPpT0WECUhpRSlGgVTegDaBZHQJW5M8wHqu91fZQoaAZoCWgPQwgfTfVkfiJiQJSGlFKUaBVN6ANoFkdAlbmt0aIeo3V9lChoBmgJaA9DCL+YLVmVT2BAlIaUUpRoFU3oA2gWR0CVuzcD8tPIdX2UKGgGaAloD0MI04OCUjTpZECUhpRSlGgVTegDaBZHQJW8hxCIDYB1fZQoaAZoCWgPQwiPb+8a9FhkQJSGlFKUaBVN6ANoFkdAlb2LM1TBInV9lChoBmgJaA9DCC8UsB2MamFAlIaUUpRoFU3oA2gWR0CVw8y5I6KcdX2UKGgGaAloD0MIYMrAAa38Y0CUhpRSlGgVTegDaBZHQJXGeYZ2pyZ1fZQoaAZoCWgPQwhYHqSnyJhRQJSGlFKUaBVLv2gWR0CVyCRw6ySndX2UKGgGaAloD0MI0Vj7O9vCY0CUhpRSlGgVTegDaBZHQJXOl8PWhAZ1fZQoaAZoCWgPQwhS8uocA7VkQJSGlFKUaBVN6ANoFkdAldc52U0N0HV9lChoBmgJaA9DCNQNFHinP2dAlIaUUpRoFU3oA2gWR0CV3Td4FA3UdX2UKGgGaAloD0MIeQPMfIerYUCUhpRSlGgVTegDaBZHQJXgroW56MR1fZQoaAZoCWgPQwiVRszs88deQJSGlFKUaBVN6ANoFkdAlgj2ACnxa3V9lChoBmgJaA9DCBmp91ROeWNAlIaUUpRoFU3oA2gWR0CWFIpZwGW2dX2UKGgGaAloD0MIt7JEZ5m2YUCUhpRSlGgVTegDaBZHQJYVcjmjj711fZQoaAZoCWgPQwg3ww34fLJkQJSGlFKUaBVN6ANoFkdAlhabYf4h2XV9lChoBmgJaA9DCIQR+wTQOWRAlIaUUpRoFU3oA2gWR0CWGgPN3W4FdX2UKGgGaAloD0MIdXKG4o5iZECUhpRSlGgVTegDaBZHQJYgeTvAoG91fZQoaAZoCWgPQwgSonxBi09hQJSGlFKUaBVN6ANoFkdAliD75dnkDXV9lChoBmgJaA9DCKX4+IRsSWZAlIaUUpRoFU3oA2gWR0CWIpiWE9McdX2UKGgGaAloD0MIq1rSUQ7gYECUhpRSlGgVTegDaBZHQJYkBUYKpkx1fZQoaAZoCWgPQwjAXIsWIGpkQJSGlFKUaBVN6ANoFkdAli1MzMzMzXV9lChoBmgJaA9DCH/bEyS2CGdAlIaUUpRoFU3oA2gWR0CWMRJZW7vodX2UKGgGaAloD0MIt9WsM75jYkCUhpRSlGgVTegDaBZHQJYzf7wazeJ1fZQoaAZoCWgPQwjyXyAIkDdjQJSGlFKUaBVN6ANoFkdAljqsrmQr+nV9lChoBmgJaA9DCP5l9+RhxmNAlIaUUpRoFU3oA2gWR0CWQlEFnqVydX2UKGgGaAloD0MIwylz8w1BZECUhpRSlGgVTegDaBZHQJZEjnuAqd91fZQoaAZoCWgPQwjtLHqngmZjQJSGlFKUaBVN6ANoFkdAlkbnm3fAK3V9lChoBmgJaA9DCMGnOXkRkWFAlIaUUpRoFU3oA2gWR0CWXfrf+CK8dX2UKGgGaAloD0MIFLAdjNhpYkCUhpRSlGgVTegDaBZHQJZppUtI0651fZQoaAZoCWgPQwi1NSIYhx5hQJSGlFKUaBVN6ANoFkdAlmqWhmGucXV9lChoBmgJaA9DCM/5KY6D2WBAlIaUUpRoFU3oA2gWR0CWa9RmseXBdX2UKGgGaAloD0MICcA/pcpxZECUhpRSlGgVTegDaBZHQJZvnmHP/rB1fZQoaAZoCWgPQwhUyQBQRVBhQJSGlFKUaBVN6ANoFkdAlnbgwwj+rHV9lChoBmgJaA9DCDtvY7MjYmJAlIaUUpRoFU3oA2gWR0CWd2hS9/SZdX2UKGgGaAloD0MIVYZxNwjvYkCUhpRSlGgVTegDaBZHQJZ46lfqoqF1fZQoaAZoCWgPQwgAOsyXl+FgQJSGlFKUaBVN6ANoFkdAlnpEJF9a2XV9lChoBmgJaA9DCHJqZ5havGVAlIaUUpRoFU3oA2gWR0CWg22qkuYhdX2UKGgGaAloD0MIoMGmziMjbkCUhpRSlGgVTaQBaBZHQJaFtm4Ajpt1fZQoaAZoCWgPQwj2JLA5hzNmQJSGlFKUaBVN6ANoFkdAlobrs8gZCXV9lChoBmgJaA9DCAcj9gmgRWJAlIaUUpRoFU3oA2gWR0CWiOyDIzWPdX2UKGgGaAloD0MIbcZpiCoHX0CUhpRSlGgVTegDaBZHQJaQoQ2/BWR1fZQoaAZoCWgPQwjw/Q3aK2tkQJSGlFKUaBVN6ANoFkdAlprJ+QU5/HV9lChoBmgJaA9DCNBhvryAzGFAlIaUUpRoFU3oA2gWR0CWnS5wwTM8dX2UKGgGaAloD0MIRBX+DO96ZECUhpRSlGgVTegDaBZHQJafWLjxTbZ1fZQoaAZoCWgPQwjghEIEHLJwQJSGlFKUaBVNwQJoFkdAlqEOR9w3pHV9lChoBmgJaA9DCGZNLPAVRGJAlIaUUpRoFU3oA2gWR0CWoy3sHB1tdX2UKGgGaAloD0MIYfw07s0tZkCUhpRSlGgVTegDaBZHQJbCE04zabp1fZQoaAZoCWgPQwgcJhqk4MFgQJSGlFKUaBVN6ANoFkdAlsSP+85CGHV9lChoBmgJaA9DCNhJfVnakF9AlIaUUpRoFU3oA2gWR0CWztFX7tRfdX2UKGgGaAloD0MI/5QqUXZ7ZECUhpRSlGgVTegDaBZHQJbPXW+XZ5B1fZQoaAZoCWgPQwjzqzlAMKtgQJSGlFKUaBVN6ANoFkdAltEoTGo73nV9lChoBmgJaA9DCPw2xHjNn2JAlIaUUpRoFU3oA2gWR0CW0r7OE/SqdX2UKGgGaAloD0MIcZF7urr6XUCUhpRSlGgVTegDaBZHQJbdC912aDx1fZQoaAZoCWgPQwgO12oP++JiQJSGlFKUaBVN6ANoFkdAlt8fxpcopnV9lChoBmgJaA9DCOc0C7Q73V5AlIaUUpRoFU3oA2gWR0CW39EKVpsXdX2UKGgGaAloD0MIke18P7XZY0CUhpRSlGgVTegDaBZHQJbhchr30wt1fZQoaAZoCWgPQwhuisdFNZJgQJSGlFKUaBVN6ANoFkdAlud91loUSXV9lChoBmgJaA9DCNIZGHlZ32BAlIaUUpRoFU3oA2gWR0CW7gT4+KTCdX2UKGgGaAloD0MITb9EvHWRYkCUhpRSlGgVTegDaBZHQJbwFvDP4VR1fZQoaAZoCWgPQwjT9NkB14tkQJSGlFKUaBVN6ANoFkdAlvJY1UEPlXV9lChoBmgJaA9DCJLqO78oXF9AlIaUUpRoFU3oA2gWR0CW8+t2cJ+ldX2UKGgGaAloD0MIWwpI+x87ZkCUhpRSlGgVTegDaBZHQJb2TWWhRIl1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}