Loriiis commited on
Commit
c77da3c
·
1 Parent(s): 17f3e7a

My first commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 211.63 +/- 72.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2184641b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2184641c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2184641ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2184641d30>", "_build": "<function ActorCriticPolicy._build at 0x7f2184641dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2184641e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2184641ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2184641f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2184645040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21846450d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2184645160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f218463d9c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670503468466855551, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABo5Er32lGu68i3CujPDSbS/S7m67brgOQAAgD8AAIA/GvUQvcNVELq6epY3z/p6tP+ChbtrmbC2AACAPwAAgD8zkGA+1+koP2LdXr1rjNG+cDdxPXqIJL0AAAAAAAAAAM2nrjxcV366r9knOT5mIzQqfO86qjJEuAAAgD8AAIA/AB41PFyTLboLqOE6D7KLNZ3TZrpLcgC6AACAPwAAgD/NuJk7hePTuWe1kzu3OR02yrVZOpUnq7oAAIA/AACAPzPbcryF6925DbY1un7Xa7Uuqxs7LedSOQAAgD8AAIA/MzbEPUStPj7eV187Kxk7vkkefTufW8S7AAAAAAAAAADmsV0+pBKoPs/QD751roC+FgALPPkZQ70AAAAAAAAAADPp9Ty5lVM/g73PvJpkwL4mP+c8+BDcvAAAAAAAAAAATZ4LPeEgl7oq1mu7d6fGM+XgOboPRog6AACAPwAAgD+tT1C+/HuVP7sV3r6OJdW+jt6Evuh8Cr4AAAAAAAAAAOZm2z0fHem5FsEVOJr9fjFMlwa6BV8xtwAAgD8AAIA/5qtEvRQ0oLp37Qg5gC8CNMsOsziWlx24AACAPwAAgD/NV568KcxfukOPrDmwrYQ2OZ0yO19rxrgAAIA/AACAP0B+rD32aGG6OLviuZGEhDScDCM7kgziswAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRdeFHxwnZECUhpRSlIwBbJRN6AOMAXSUR0CVBPCK77KrdX2UKGgGaAloD0MIUvLqHAOYYECUhpRSlGgVTegDaBZHQJUIu/TLGJh1fZQoaAZoCWgPQwholgSoKRBmQJSGlFKUaBVN6ANoFkdAlQm1Bt1p03V9lChoBmgJaA9DCBgJbTmXjWVAlIaUUpRoFU3oA2gWR0CVCucAR02cdX2UKGgGaAloD0MInu3RG+7rY0CUhpRSlGgVTegDaBZHQJUOL3Fkxyp1fZQoaAZoCWgPQwjVdhN8UyBjQJSGlFKUaBVN6ANoFkdAlRVisGPgenV9lChoBmgJaA9DCHF2a5kMOGdAlIaUUpRoFU3oA2gWR0CVF4hxHXmOdX2UKGgGaAloD0MIskgT7wBNX0CUhpRSlGgVTegDaBZHQJUZECOmzjZ1fZQoaAZoCWgPQwjMejGUk49hQJSGlFKUaBVN6ANoFkdAlRpk9lmOEXV9lChoBmgJaA9DCEpgcw6e6mVAlIaUUpRoFU3oA2gWR0CVI5FWXC0odX2UKGgGaAloD0MITMEaZ1OSY0CUhpRSlGgVTegDaBZHQJUndWzWwvB1fZQoaAZoCWgPQwhiLxSwnbRlQJSGlFKUaBVN6ANoFkdAlTAkVrRBvHV9lChoBmgJaA9DCKFoHsAiHmBAlIaUUpRoFU3oA2gWR0CVN6QC0WuYdX2UKGgGaAloD0MIX+/+eK/vYkCUhpRSlGgVTegDaBZHQJU6Csny/bl1fZQoaAZoCWgPQwhAwjBgyYxjQJSGlFKUaBVN6ANoFkdAlU9iFPBSDXV9lChoBmgJaA9DCK2h1F5EXF1AlIaUUpRoFU3oA2gWR0CVU8SKm8/VdX2UKGgGaAloD0MIg/xs5Dr4YUCUhpRSlGgVTegDaBZHQJVZmUILPUt1fZQoaAZoCWgPQwjM7PMYZVNkQJSGlFKUaBVN6ANoFkdAlV0oRywOfHV9lChoBmgJaA9DCOyGbYuyi2FAlIaUUpRoFU3oA2gWR0CVXgwW3z+WdX2UKGgGaAloD0MIMX2vIThZYUCUhpRSlGgVTegDaBZHQJVfMESuhbp1fZQoaAZoCWgPQwhXBtUGp6tiQJSGlFKUaBVN6ANoFkdAlWJ1VktmMHV9lChoBmgJaA9DCKqezD/6BjBAlIaUUpRoFU0GAWgWR0CVaJwDvE0jdX2UKGgGaAloD0MIN4lBYGWYYkCUhpRSlGgVTegDaBZHQJVpIRHww0x1fZQoaAZoCWgPQwjnNXaJanFkQJSGlFKUaBVN6ANoFkdAlWqv114gR3V9lChoBmgJaA9DCAsMWd3qhWJAlIaUUpRoFU3oA2gWR0CVbB2aUiY+dX2UKGgGaAloD0MI1jcwuVEtZECUhpRSlGgVTegDaBZHQJVtPbfxc3V1fZQoaAZoCWgPQwirWWd8X8JfQJSGlFKUaBVN6ANoFkdAlXNdcGC7LHV9lChoBmgJaA9DCLQfKSJDY2NAlIaUUpRoFU3oA2gWR0CVdeAcT8HfdX2UKGgGaAloD0MIM0+uKZBuY0CUhpRSlGgVTegDaBZHQJV+GptJnQJ1fZQoaAZoCWgPQwjNeFvpNWdnQJSGlFKUaBVN6ANoFkdAlYYbTQVsUXV9lChoBmgJaA9DCGEW2jnNjGNAlIaUUpRoFU3oA2gWR0CViJtHxz7udX2UKGgGaAloD0MISWdg5OVkYECUhpRSlGgVTegDaBZHQJWLGlTFVDN1fZQoaAZoCWgPQwgPKQZINH1lQJSGlFKUaBVN6ANoFkdAlaLgpe/pMnV9lChoBmgJaA9DCGTo2EGlmGFAlIaUUpRoFU3oA2gWR0CVrcIacZtOdX2UKGgGaAloD0MIWrvtQnPRYkCUhpRSlGgVTegDaBZHQJWur5hz/6x1fZQoaAZoCWgPQwidu10vTbdkQJSGlFKUaBVN6ANoFkdAla/JJkGzKXV9lChoBmgJaA9DCLM/UG5bxWVAlIaUUpRoFU3oA2gWR0CVswpHqeK9dX2UKGgGaAloD0MICAYQPpT0WECUhpRSlGgVTegDaBZHQJW5M8wHqu91fZQoaAZoCWgPQwgfTfVkfiJiQJSGlFKUaBVN6ANoFkdAlbmt0aIeo3V9lChoBmgJaA9DCL+YLVmVT2BAlIaUUpRoFU3oA2gWR0CVuzcD8tPIdX2UKGgGaAloD0MI04OCUjTpZECUhpRSlGgVTegDaBZHQJW8hxCIDYB1fZQoaAZoCWgPQwiPb+8a9FhkQJSGlFKUaBVN6ANoFkdAlb2LM1TBInV9lChoBmgJaA9DCC8UsB2MamFAlIaUUpRoFU3oA2gWR0CVw8y5I6KcdX2UKGgGaAloD0MIYMrAAa38Y0CUhpRSlGgVTegDaBZHQJXGeYZ2pyZ1fZQoaAZoCWgPQwhYHqSnyJhRQJSGlFKUaBVLv2gWR0CVyCRw6ySndX2UKGgGaAloD0MI0Vj7O9vCY0CUhpRSlGgVTegDaBZHQJXOl8PWhAZ1fZQoaAZoCWgPQwhS8uocA7VkQJSGlFKUaBVN6ANoFkdAldc52U0N0HV9lChoBmgJaA9DCNQNFHinP2dAlIaUUpRoFU3oA2gWR0CV3Td4FA3UdX2UKGgGaAloD0MIeQPMfIerYUCUhpRSlGgVTegDaBZHQJXgroW56MR1fZQoaAZoCWgPQwiVRszs88deQJSGlFKUaBVN6ANoFkdAlgj2ACnxa3V9lChoBmgJaA9DCBmp91ROeWNAlIaUUpRoFU3oA2gWR0CWFIpZwGW2dX2UKGgGaAloD0MIt7JEZ5m2YUCUhpRSlGgVTegDaBZHQJYVcjmjj711fZQoaAZoCWgPQwg3ww34fLJkQJSGlFKUaBVN6ANoFkdAlhabYf4h2XV9lChoBmgJaA9DCIQR+wTQOWRAlIaUUpRoFU3oA2gWR0CWGgPN3W4FdX2UKGgGaAloD0MIdXKG4o5iZECUhpRSlGgVTegDaBZHQJYgeTvAoG91fZQoaAZoCWgPQwgSonxBi09hQJSGlFKUaBVN6ANoFkdAliD75dnkDXV9lChoBmgJaA9DCKX4+IRsSWZAlIaUUpRoFU3oA2gWR0CWIpiWE9McdX2UKGgGaAloD0MIq1rSUQ7gYECUhpRSlGgVTegDaBZHQJYkBUYKpkx1fZQoaAZoCWgPQwjAXIsWIGpkQJSGlFKUaBVN6ANoFkdAli1MzMzMzXV9lChoBmgJaA9DCH/bEyS2CGdAlIaUUpRoFU3oA2gWR0CWMRJZW7vodX2UKGgGaAloD0MIt9WsM75jYkCUhpRSlGgVTegDaBZHQJYzf7wazeJ1fZQoaAZoCWgPQwjyXyAIkDdjQJSGlFKUaBVN6ANoFkdAljqsrmQr+nV9lChoBmgJaA9DCP5l9+RhxmNAlIaUUpRoFU3oA2gWR0CWQlEFnqVydX2UKGgGaAloD0MIwylz8w1BZECUhpRSlGgVTegDaBZHQJZEjnuAqd91fZQoaAZoCWgPQwjtLHqngmZjQJSGlFKUaBVN6ANoFkdAlkbnm3fAK3V9lChoBmgJaA9DCMGnOXkRkWFAlIaUUpRoFU3oA2gWR0CWXfrf+CK8dX2UKGgGaAloD0MIFLAdjNhpYkCUhpRSlGgVTegDaBZHQJZppUtI0651fZQoaAZoCWgPQwi1NSIYhx5hQJSGlFKUaBVN6ANoFkdAlmqWhmGucXV9lChoBmgJaA9DCM/5KY6D2WBAlIaUUpRoFU3oA2gWR0CWa9RmseXBdX2UKGgGaAloD0MICcA/pcpxZECUhpRSlGgVTegDaBZHQJZvnmHP/rB1fZQoaAZoCWgPQwhUyQBQRVBhQJSGlFKUaBVN6ANoFkdAlnbgwwj+rHV9lChoBmgJaA9DCDtvY7MjYmJAlIaUUpRoFU3oA2gWR0CWd2hS9/SZdX2UKGgGaAloD0MIVYZxNwjvYkCUhpRSlGgVTegDaBZHQJZ46lfqoqF1fZQoaAZoCWgPQwgAOsyXl+FgQJSGlFKUaBVN6ANoFkdAlnpEJF9a2XV9lChoBmgJaA9DCHJqZ5havGVAlIaUUpRoFU3oA2gWR0CWg22qkuYhdX2UKGgGaAloD0MIoMGmziMjbkCUhpRSlGgVTaQBaBZHQJaFtm4Ajpt1fZQoaAZoCWgPQwj2JLA5hzNmQJSGlFKUaBVN6ANoFkdAlobrs8gZCXV9lChoBmgJaA9DCAcj9gmgRWJAlIaUUpRoFU3oA2gWR0CWiOyDIzWPdX2UKGgGaAloD0MIbcZpiCoHX0CUhpRSlGgVTegDaBZHQJaQoQ2/BWR1fZQoaAZoCWgPQwjw/Q3aK2tkQJSGlFKUaBVN6ANoFkdAlprJ+QU5/HV9lChoBmgJaA9DCNBhvryAzGFAlIaUUpRoFU3oA2gWR0CWnS5wwTM8dX2UKGgGaAloD0MIRBX+DO96ZECUhpRSlGgVTegDaBZHQJafWLjxTbZ1fZQoaAZoCWgPQwjghEIEHLJwQJSGlFKUaBVNwQJoFkdAlqEOR9w3pHV9lChoBmgJaA9DCGZNLPAVRGJAlIaUUpRoFU3oA2gWR0CWoy3sHB1tdX2UKGgGaAloD0MIYfw07s0tZkCUhpRSlGgVTegDaBZHQJbCE04zabp1fZQoaAZoCWgPQwgcJhqk4MFgQJSGlFKUaBVN6ANoFkdAlsSP+85CGHV9lChoBmgJaA9DCNhJfVnakF9AlIaUUpRoFU3oA2gWR0CWztFX7tRfdX2UKGgGaAloD0MI/5QqUXZ7ZECUhpRSlGgVTegDaBZHQJbPXW+XZ5B1fZQoaAZoCWgPQwjzqzlAMKtgQJSGlFKUaBVN6ANoFkdAltEoTGo73nV9lChoBmgJaA9DCPw2xHjNn2JAlIaUUpRoFU3oA2gWR0CW0r7OE/SqdX2UKGgGaAloD0MIcZF7urr6XUCUhpRSlGgVTegDaBZHQJbdC912aDx1fZQoaAZoCWgPQwgO12oP++JiQJSGlFKUaBVN6ANoFkdAlt8fxpcopnV9lChoBmgJaA9DCOc0C7Q73V5AlIaUUpRoFU3oA2gWR0CW39EKVpsXdX2UKGgGaAloD0MIke18P7XZY0CUhpRSlGgVTegDaBZHQJbhchr30wt1fZQoaAZoCWgPQwhuisdFNZJgQJSGlFKUaBVN6ANoFkdAlud91loUSXV9lChoBmgJaA9DCNIZGHlZ32BAlIaUUpRoFU3oA2gWR0CW7gT4+KTCdX2UKGgGaAloD0MITb9EvHWRYkCUhpRSlGgVTegDaBZHQJbwFvDP4VR1fZQoaAZoCWgPQwjT9NkB14tkQJSGlFKUaBVN6ANoFkdAlvJY1UEPlXV9lChoBmgJaA9DCJLqO78oXF9AlIaUUpRoFU3oA2gWR0CW8+t2cJ+ldX2UKGgGaAloD0MIWwpI+x87ZkCUhpRSlGgVTegDaBZHQJb2TWWhRIl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_model_01.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2835d295fbf02f98cbf5ab346bb262ee4b322a4d3d7872329d21b73ebfb3f00
3
+ size 147220
ppo_model_01/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_model_01/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2184641b80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2184641c10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2184641ca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2184641d30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2184641dc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2184641e50>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2184641ee0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2184641f70>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2184645040>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21846450d0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2184645160>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f218463d9c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670503468466855551,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABo5Er32lGu68i3CujPDSbS/S7m67brgOQAAgD8AAIA/GvUQvcNVELq6epY3z/p6tP+ChbtrmbC2AACAPwAAgD8zkGA+1+koP2LdXr1rjNG+cDdxPXqIJL0AAAAAAAAAAM2nrjxcV366r9knOT5mIzQqfO86qjJEuAAAgD8AAIA/AB41PFyTLboLqOE6D7KLNZ3TZrpLcgC6AACAPwAAgD/NuJk7hePTuWe1kzu3OR02yrVZOpUnq7oAAIA/AACAPzPbcryF6925DbY1un7Xa7Uuqxs7LedSOQAAgD8AAIA/MzbEPUStPj7eV187Kxk7vkkefTufW8S7AAAAAAAAAADmsV0+pBKoPs/QD751roC+FgALPPkZQ70AAAAAAAAAADPp9Ty5lVM/g73PvJpkwL4mP+c8+BDcvAAAAAAAAAAATZ4LPeEgl7oq1mu7d6fGM+XgOboPRog6AACAPwAAgD+tT1C+/HuVP7sV3r6OJdW+jt6Evuh8Cr4AAAAAAAAAAOZm2z0fHem5FsEVOJr9fjFMlwa6BV8xtwAAgD8AAIA/5qtEvRQ0oLp37Qg5gC8CNMsOsziWlx24AACAPwAAgD/NV568KcxfukOPrDmwrYQ2OZ0yO19rxrgAAIA/AACAP0B+rD32aGG6OLviuZGEhDScDCM7kgziswAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRdeFHxwnZECUhpRSlIwBbJRN6AOMAXSUR0CVBPCK77KrdX2UKGgGaAloD0MIUvLqHAOYYECUhpRSlGgVTegDaBZHQJUIu/TLGJh1fZQoaAZoCWgPQwholgSoKRBmQJSGlFKUaBVN6ANoFkdAlQm1Bt1p03V9lChoBmgJaA9DCBgJbTmXjWVAlIaUUpRoFU3oA2gWR0CVCucAR02cdX2UKGgGaAloD0MInu3RG+7rY0CUhpRSlGgVTegDaBZHQJUOL3Fkxyp1fZQoaAZoCWgPQwjVdhN8UyBjQJSGlFKUaBVN6ANoFkdAlRVisGPgenV9lChoBmgJaA9DCHF2a5kMOGdAlIaUUpRoFU3oA2gWR0CVF4hxHXmOdX2UKGgGaAloD0MIskgT7wBNX0CUhpRSlGgVTegDaBZHQJUZECOmzjZ1fZQoaAZoCWgPQwjMejGUk49hQJSGlFKUaBVN6ANoFkdAlRpk9lmOEXV9lChoBmgJaA9DCEpgcw6e6mVAlIaUUpRoFU3oA2gWR0CVI5FWXC0odX2UKGgGaAloD0MITMEaZ1OSY0CUhpRSlGgVTegDaBZHQJUndWzWwvB1fZQoaAZoCWgPQwhiLxSwnbRlQJSGlFKUaBVN6ANoFkdAlTAkVrRBvHV9lChoBmgJaA9DCKFoHsAiHmBAlIaUUpRoFU3oA2gWR0CVN6QC0WuYdX2UKGgGaAloD0MIX+/+eK/vYkCUhpRSlGgVTegDaBZHQJU6Csny/bl1fZQoaAZoCWgPQwhAwjBgyYxjQJSGlFKUaBVN6ANoFkdAlU9iFPBSDXV9lChoBmgJaA9DCK2h1F5EXF1AlIaUUpRoFU3oA2gWR0CVU8SKm8/VdX2UKGgGaAloD0MIg/xs5Dr4YUCUhpRSlGgVTegDaBZHQJVZmUILPUt1fZQoaAZoCWgPQwjM7PMYZVNkQJSGlFKUaBVN6ANoFkdAlV0oRywOfHV9lChoBmgJaA9DCOyGbYuyi2FAlIaUUpRoFU3oA2gWR0CVXgwW3z+WdX2UKGgGaAloD0MIMX2vIThZYUCUhpRSlGgVTegDaBZHQJVfMESuhbp1fZQoaAZoCWgPQwhXBtUGp6tiQJSGlFKUaBVN6ANoFkdAlWJ1VktmMHV9lChoBmgJaA9DCKqezD/6BjBAlIaUUpRoFU0GAWgWR0CVaJwDvE0jdX2UKGgGaAloD0MIN4lBYGWYYkCUhpRSlGgVTegDaBZHQJVpIRHww0x1fZQoaAZoCWgPQwjnNXaJanFkQJSGlFKUaBVN6ANoFkdAlWqv114gR3V9lChoBmgJaA9DCAsMWd3qhWJAlIaUUpRoFU3oA2gWR0CVbB2aUiY+dX2UKGgGaAloD0MI1jcwuVEtZECUhpRSlGgVTegDaBZHQJVtPbfxc3V1fZQoaAZoCWgPQwirWWd8X8JfQJSGlFKUaBVN6ANoFkdAlXNdcGC7LHV9lChoBmgJaA9DCLQfKSJDY2NAlIaUUpRoFU3oA2gWR0CVdeAcT8HfdX2UKGgGaAloD0MIM0+uKZBuY0CUhpRSlGgVTegDaBZHQJV+GptJnQJ1fZQoaAZoCWgPQwjNeFvpNWdnQJSGlFKUaBVN6ANoFkdAlYYbTQVsUXV9lChoBmgJaA9DCGEW2jnNjGNAlIaUUpRoFU3oA2gWR0CViJtHxz7udX2UKGgGaAloD0MISWdg5OVkYECUhpRSlGgVTegDaBZHQJWLGlTFVDN1fZQoaAZoCWgPQwgPKQZINH1lQJSGlFKUaBVN6ANoFkdAlaLgpe/pMnV9lChoBmgJaA9DCGTo2EGlmGFAlIaUUpRoFU3oA2gWR0CVrcIacZtOdX2UKGgGaAloD0MIWrvtQnPRYkCUhpRSlGgVTegDaBZHQJWur5hz/6x1fZQoaAZoCWgPQwidu10vTbdkQJSGlFKUaBVN6ANoFkdAla/JJkGzKXV9lChoBmgJaA9DCLM/UG5bxWVAlIaUUpRoFU3oA2gWR0CVswpHqeK9dX2UKGgGaAloD0MICAYQPpT0WECUhpRSlGgVTegDaBZHQJW5M8wHqu91fZQoaAZoCWgPQwgfTfVkfiJiQJSGlFKUaBVN6ANoFkdAlbmt0aIeo3V9lChoBmgJaA9DCL+YLVmVT2BAlIaUUpRoFU3oA2gWR0CVuzcD8tPIdX2UKGgGaAloD0MI04OCUjTpZECUhpRSlGgVTegDaBZHQJW8hxCIDYB1fZQoaAZoCWgPQwiPb+8a9FhkQJSGlFKUaBVN6ANoFkdAlb2LM1TBInV9lChoBmgJaA9DCC8UsB2MamFAlIaUUpRoFU3oA2gWR0CVw8y5I6KcdX2UKGgGaAloD0MIYMrAAa38Y0CUhpRSlGgVTegDaBZHQJXGeYZ2pyZ1fZQoaAZoCWgPQwhYHqSnyJhRQJSGlFKUaBVLv2gWR0CVyCRw6ySndX2UKGgGaAloD0MI0Vj7O9vCY0CUhpRSlGgVTegDaBZHQJXOl8PWhAZ1fZQoaAZoCWgPQwhS8uocA7VkQJSGlFKUaBVN6ANoFkdAldc52U0N0HV9lChoBmgJaA9DCNQNFHinP2dAlIaUUpRoFU3oA2gWR0CV3Td4FA3UdX2UKGgGaAloD0MIeQPMfIerYUCUhpRSlGgVTegDaBZHQJXgroW56MR1fZQoaAZoCWgPQwiVRszs88deQJSGlFKUaBVN6ANoFkdAlgj2ACnxa3V9lChoBmgJaA9DCBmp91ROeWNAlIaUUpRoFU3oA2gWR0CWFIpZwGW2dX2UKGgGaAloD0MIt7JEZ5m2YUCUhpRSlGgVTegDaBZHQJYVcjmjj711fZQoaAZoCWgPQwg3ww34fLJkQJSGlFKUaBVN6ANoFkdAlhabYf4h2XV9lChoBmgJaA9DCIQR+wTQOWRAlIaUUpRoFU3oA2gWR0CWGgPN3W4FdX2UKGgGaAloD0MIdXKG4o5iZECUhpRSlGgVTegDaBZHQJYgeTvAoG91fZQoaAZoCWgPQwgSonxBi09hQJSGlFKUaBVN6ANoFkdAliD75dnkDXV9lChoBmgJaA9DCKX4+IRsSWZAlIaUUpRoFU3oA2gWR0CWIpiWE9McdX2UKGgGaAloD0MIq1rSUQ7gYECUhpRSlGgVTegDaBZHQJYkBUYKpkx1fZQoaAZoCWgPQwjAXIsWIGpkQJSGlFKUaBVN6ANoFkdAli1MzMzMzXV9lChoBmgJaA9DCH/bEyS2CGdAlIaUUpRoFU3oA2gWR0CWMRJZW7vodX2UKGgGaAloD0MIt9WsM75jYkCUhpRSlGgVTegDaBZHQJYzf7wazeJ1fZQoaAZoCWgPQwjyXyAIkDdjQJSGlFKUaBVN6ANoFkdAljqsrmQr+nV9lChoBmgJaA9DCP5l9+RhxmNAlIaUUpRoFU3oA2gWR0CWQlEFnqVydX2UKGgGaAloD0MIwylz8w1BZECUhpRSlGgVTegDaBZHQJZEjnuAqd91fZQoaAZoCWgPQwjtLHqngmZjQJSGlFKUaBVN6ANoFkdAlkbnm3fAK3V9lChoBmgJaA9DCMGnOXkRkWFAlIaUUpRoFU3oA2gWR0CWXfrf+CK8dX2UKGgGaAloD0MIFLAdjNhpYkCUhpRSlGgVTegDaBZHQJZppUtI0651fZQoaAZoCWgPQwi1NSIYhx5hQJSGlFKUaBVN6ANoFkdAlmqWhmGucXV9lChoBmgJaA9DCM/5KY6D2WBAlIaUUpRoFU3oA2gWR0CWa9RmseXBdX2UKGgGaAloD0MICcA/pcpxZECUhpRSlGgVTegDaBZHQJZvnmHP/rB1fZQoaAZoCWgPQwhUyQBQRVBhQJSGlFKUaBVN6ANoFkdAlnbgwwj+rHV9lChoBmgJaA9DCDtvY7MjYmJAlIaUUpRoFU3oA2gWR0CWd2hS9/SZdX2UKGgGaAloD0MIVYZxNwjvYkCUhpRSlGgVTegDaBZHQJZ46lfqoqF1fZQoaAZoCWgPQwgAOsyXl+FgQJSGlFKUaBVN6ANoFkdAlnpEJF9a2XV9lChoBmgJaA9DCHJqZ5havGVAlIaUUpRoFU3oA2gWR0CWg22qkuYhdX2UKGgGaAloD0MIoMGmziMjbkCUhpRSlGgVTaQBaBZHQJaFtm4Ajpt1fZQoaAZoCWgPQwj2JLA5hzNmQJSGlFKUaBVN6ANoFkdAlobrs8gZCXV9lChoBmgJaA9DCAcj9gmgRWJAlIaUUpRoFU3oA2gWR0CWiOyDIzWPdX2UKGgGaAloD0MIbcZpiCoHX0CUhpRSlGgVTegDaBZHQJaQoQ2/BWR1fZQoaAZoCWgPQwjw/Q3aK2tkQJSGlFKUaBVN6ANoFkdAlprJ+QU5/HV9lChoBmgJaA9DCNBhvryAzGFAlIaUUpRoFU3oA2gWR0CWnS5wwTM8dX2UKGgGaAloD0MIRBX+DO96ZECUhpRSlGgVTegDaBZHQJafWLjxTbZ1fZQoaAZoCWgPQwjghEIEHLJwQJSGlFKUaBVNwQJoFkdAlqEOR9w3pHV9lChoBmgJaA9DCGZNLPAVRGJAlIaUUpRoFU3oA2gWR0CWoy3sHB1tdX2UKGgGaAloD0MIYfw07s0tZkCUhpRSlGgVTegDaBZHQJbCE04zabp1fZQoaAZoCWgPQwgcJhqk4MFgQJSGlFKUaBVN6ANoFkdAlsSP+85CGHV9lChoBmgJaA9DCNhJfVnakF9AlIaUUpRoFU3oA2gWR0CWztFX7tRfdX2UKGgGaAloD0MI/5QqUXZ7ZECUhpRSlGgVTegDaBZHQJbPXW+XZ5B1fZQoaAZoCWgPQwjzqzlAMKtgQJSGlFKUaBVN6ANoFkdAltEoTGo73nV9lChoBmgJaA9DCPw2xHjNn2JAlIaUUpRoFU3oA2gWR0CW0r7OE/SqdX2UKGgGaAloD0MIcZF7urr6XUCUhpRSlGgVTegDaBZHQJbdC912aDx1fZQoaAZoCWgPQwgO12oP++JiQJSGlFKUaBVN6ANoFkdAlt8fxpcopnV9lChoBmgJaA9DCOc0C7Q73V5AlIaUUpRoFU3oA2gWR0CW39EKVpsXdX2UKGgGaAloD0MIke18P7XZY0CUhpRSlGgVTegDaBZHQJbhchr30wt1fZQoaAZoCWgPQwhuisdFNZJgQJSGlFKUaBVN6ANoFkdAlud91loUSXV9lChoBmgJaA9DCNIZGHlZ32BAlIaUUpRoFU3oA2gWR0CW7gT4+KTCdX2UKGgGaAloD0MITb9EvHWRYkCUhpRSlGgVTegDaBZHQJbwFvDP4VR1fZQoaAZoCWgPQwjT9NkB14tkQJSGlFKUaBVN6ANoFkdAlvJY1UEPlXV9lChoBmgJaA9DCJLqO78oXF9AlIaUUpRoFU3oA2gWR0CW8+t2cJ+ldX2UKGgGaAloD0MIWwpI+x87ZkCUhpRSlGgVTegDaBZHQJb2TWWhRIl1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_model_01/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecb356a866478e62f16a172d2dd6f022add82d4c84f2edb7016adb523241f555
3
+ size 87929
ppo_model_01/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0181c5978fab04aeff590f35a5f217c2ae23259dffa9b087fc30318c5e601579
3
+ size 43201
ppo_model_01/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_model_01/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (247 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 211.63288594501827, "std_reward": 72.07878049572903, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T13:13:08.100061"}