metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: WizardCoder
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 0.799
verified: false
WizardCoder: Empowering Code Large Language Models with Evol-Instruct
🤗 HF Repo •🐱 Github Repo • 🐦 Twitter
📃 [WizardLM] • 📃 [WizardCoder] • 📃 [WizardMath]
👋 Join our Discord
News
[2023/01/04] 🔥 We released WizardCoder-33B-V1.1 trained from deepseek-coder-33b-base, the SOTA OSS Code LLM on EvalPlus Leaderboard, achieves 79.9 pass@1 on HumanEval, 73.2 pass@1 on HumanEval-Plus, 78.9 pass@1 on MBPP, and 66.9 pass@1 on MBPP-Plus.
[2023/01/04] 🔥 WizardCoder-33B-V1.1 outperforms ChatGPT 3.5, Gemini Pro, and DeepSeek-Coder-33B-instruct on HumanEval and HumanEval-Plus pass@1.
[2023/01/04] 🔥 WizardCoder-33B-V1.1 is comparable with ChatGPT 3.5, and surpasses Gemini Pro on MBPP and MBPP-Plus pass@1.
Model | Checkpoint | Paper | HumanEval | HumanEval+ | MBPP | MBPP+ | License |
---|---|---|---|---|---|---|---|
GPT-4-Turbo (Nov 2023) | - | - | 85.4 | 81.7 | 83.0 | 70.7 | - |
GPT-4 (May 2023) | - | - | 88.4 | 76.8 | - | - | - |
GPT-3.5-Turbo (Nov 2023) | - | - | 72.6 | 65.9 | 81.7 | 69.4 | - |
Gemini Pro | - | - | 63.4 | 55.5 | 72.9 | 57.9 | - |
DeepSeek-Coder-33B-instruct | - | - | 78.7 | 72.6 | 78.7 | 66.7 | - |
WizardCoder-33B-V1.1 | 🤗 HF Link | 📃 [WizardCoder] | 79.9 | 73.2 | 78.9 | 66.9 | MSFTResearch |
WizardCoder-Python-34B-V1.0 | 🤗 HF Link | 📃 [WizardCoder] | 73.2 | 64.6 | 73.2 | 59.9 | Llama2 |
WizardCoder-15B-V1.0 | 🤗 HF Link | 📃 [WizardCoder] | 59.8 | 52.4 | -- | -- | OpenRAIL-M |
WizardCoder-Python-13B-V1.0 | 🤗 HF Link | 📃 [WizardCoder] | 64.0 | -- | -- | -- | Llama2 |
WizardCoder-Python-7B-V1.0 | 🤗 HF Link | 📃 [WizardCoder] | 55.5 | -- | -- | -- | Llama2 |
WizardCoder-3B-V1.0 | 🤗 HF Link | 📃 [WizardCoder] | 34.8 | -- | -- | -- | OpenRAIL-M |
WizardCoder-1B-V1.0 | 🤗 HF Link | 📃 [WizardCoder] | 23.8 | -- | -- | -- | OpenRAIL-M |
❗ Data Contamination Check:
Before model training, we carefully and rigorously checked all the training data, and used multiple deduplication methods to verify and prevent data leakage on HumanEval and MBPP test set.
🔥 ❗Note for model system prompts usage:
Please use the same systems prompts strictly with us, and we do not guarantee the accuracy of the quantified versions.
Default version:
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
How to Reproduce the Performance of WizardCoder-33B-V1.1
We provide all codes here.
We also provide all generated results.
transformers==4.36.2
vllm==0.2.5
(1) HumanEval and HumanEval-Plus
- Step 1
Code Generation (w/o accelerate)
model="WizardLM/WizardCoder-33B-V1.1"
temp=0.0
max_len=2048
pred_num=1
num_seqs_per_iter=1
output_path=preds/T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode
mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model
# 164 problems, 21 per GPU if GPU=8
index=0
gpu_num=8
for ((i = 0; i < $gpu_num; i++)); do
start_index=$((i * 21))
end_index=$(((i + 1) * 21))
gpu=$((i))
echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
((index++))
(
CUDA_VISIBLE_DEVICES=$gpu python humaneval_gen.py --model ${model} \
--start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
--num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --greedy_decode
) &
if (($index % $gpu_num == 0)); then wait; fi
done
Code Generation (w/ vllm accelerate)
model="WizardLM/WizardCoder-33B-V1.1"
temp=0.0
max_len=2048
pred_num=1
num_seqs_per_iter=1
output_path=preds/T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode_vllm
mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model
CUDA_VISIBLE_DEVICES=0,1,2,3 python humaneval_gen_vllm.py --model ${model} \
--start_index 0 --end_index 164 --temperature ${temp} \
--num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --num_gpus 4 --overwrite
- Step 2: Get the score
Install Eval-Plus benchmark.
git clone https://github.com/evalplus/evalplus.git
cd evalplus
export PYTHONPATH=$PYTHONPATH:$(pwd)
pip install -r requirements.txt
Get HumanEval and HumanEval-Plus scores.
output_path=preds/T0.0_N1_WizardCoder-33B-V1.1_Greedy_Decode
echo 'Output path: '$output_path
python process_humaneval.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt
evalplus.evaluate --dataset humaneval --samples ${output_path}.jsonl
(2) MBPP and MBPP-Plus
The preprocessed questions are provided in mbppplus.json.
- Step 1
Code Generation (w/o accelerate)
model="WizardLM/WizardCoder-33B-V1.1"
temp=0.0
max_len=2048
pred_num=1
num_seqs_per_iter=1
output_path=preds/MBPP_T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode
mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model
# 399 problems, 50 per GPU if GPU=8
index=0
gpu_num=8
for ((i = 0; i < $gpu_num; i++)); do
start_index=$((i * 50))
end_index=$(((i + 1) * 50))
gpu=$((i))
echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
((index++))
(
CUDA_VISIBLE_DEVICES=$gpu python mbppplus_gen.py --model ${model} \
--start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
--num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --mbpp_path "mbppplus.json" --greedy_decode
) &
if (($index % $gpu_num == 0)); then wait; fi
done
Code Generation (w/ vllm accelerate)
model="WizardLM/WizardCoder-33B-V1.1"
temp=0.0
max_len=2048
pred_num=1
num_seqs_per_iter=1
output_path=preds/MBPP_T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode_vllm
mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model
CUDA_VISIBLE_DEVICES=0,1,2,3 python mbppplus_gen_vllm.py --model ${model} \
--start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
--num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --mbpp_path "mbppplus.json" --num_gpus 4
- Step 2: Get the score
Install Eval-Plus benchmark.
git clone https://github.com/evalplus/evalplus.git
cd evalplus
export PYTHONPATH=$PYTHONPATH:$(pwd)
pip install -r requirements.txt
Get HumanEval and HumanEval-Plus scores.
output_path=preds/MBPP_T0.0_N1_WizardCoder-33B-V1.1_Greedy_Decode
echo 'Output path: '$output_path
python mbppplus_process_preds.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt
evalplus.evaluate --dataset mbpp --samples ${output_path}.jsonl
Citation
Please cite the repo if you use the data, method or code in this repo.
@article{luo2023wizardcoder,
title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
journal={arXiv preprint arXiv:2306.08568},
year={2023}
}