metadata
license: apache-2.0
language:
- fr
- it
- de
- es
- en
inference: false
Model Card for Mixtral-Fusion-4x7B-Instruct-v0.1
This model is an experimental model created by merging mistralai/Mixtral-8x7B-Instruct-v0.1 experts.
How we merged experts
We simply take the average of every two experts.weight.
The same goes for gate.weight.
How To Convert
use colab cpu-high-memory.
convert_mixtral_8x7b_to_4x7b.ipynb
Usage
pip install git+https://github.com/huggingface/transformers --upgrade
pip install torch accelerate bitsandbytes flash_attn
from transformers import AutoTokenizer, AutoModelForCausalLM, MixtralForCausalLM
import torch
model_name_or_path = "mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = MixtralForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True)
# set num_experts_per_tok 1 or 2 ?
model.config.num_experts_per_tok = 2
# message
messages = [
{"role": "user", "content": "Tell me what's for dinner tonight."},
]
with torch.no_grad():
token_ids = tokenizer.apply_chat_template(messages, return_tensors="pt")
output_ids = model.generate(
token_ids.to(model.device),
temperature=0.5,
do_sample=True,
top_p=0.95,
top_k=40,
max_new_tokens=128,
repetition_penalty=1.5
)
output = tokenizer.decode(output_ids[0][token_ids.size(1) :])
print(output)