metadata
language:
- en
license: apache-2.0
tags:
- merge
datasets:
- Locutusque/inst_mix_v2_top_100k
pipeline_tag: text-generation
widget:
- text: >-
<|USER|> Design a Neo4j database and Cypher function snippet to Display
Extreme Dental hygiene: Using Mouthwash for Analysis for Beginners.
Implement if/else or switch/case statements to handle different conditions
related to the Consent. Provide detailed comments explaining your control
flow and the reasoning behind each decision. <|ASSISTANT|>
- text: '<|USER|> Write me a story about a magical place. <|ASSISTANT|> '
- text: >-
<|USER|> Write me an essay about the life of George Washington
<|ASSISTANT|>
- text: '<|USER|> Solve the following equation 2x + 10 = 20 <|ASSISTANT|> '
- text: >-
<|USER|> Craft me a list of some nice places to visit around the world.
<|ASSISTANT|>
- text: >-
<|USER|> How to manage a lazy employee: Address the employee verbally.
Don't allow an employee's laziness or lack of enthusiasm to become a
recurring issue. Tell the employee you're hoping to speak with them about
workplace expectations and performance, and schedule a time to sit down
together. Question: To manage a lazy employee, it is suggested to talk to
the employee. True, False, or Neither? <|ASSISTANT|>
inference:
parameters:
temperature: 0.5
do_sample: true
top_p: 0.5
top_k: 30
max_new_tokens: 250
repetition_penalty: 1.15
model-index:
- name: LocutusqueXFelladrin-TinyMistral248M-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 24.74
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 27.79
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.12
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 40.12
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.09
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/LocutusqueXFelladrin-TinyMistral248M-Instruct
name: Open LLM Leaderboard
LocutusqueXFelladrin-TinyMistral248M-Instruct
This model was created by merging Locutusque/TinyMistral-248M-Instruct and Felladrin/TinyMistral-248M-SFT-v4 using mergekit. After the two models were merged, the resulting model was further trained on ~20,000 examples on the Locutusque/inst_mix_v2_top_100k at a low learning rate to further normalize weights. The following is the YAML config used to merge:
models:
- model: Felladrin/TinyMistral-248M-SFT-v4
parameters:
weight: 0.5
- model: Locutusque/TinyMistral-248M-Instruct
parameters:
weight: 1.0
merge_method: linear
dtype: float16
The resulting model combines the best of both worlds. With Locutusque/TinyMistral-248M-Instruct's coding capabilities and reasoning skills, and Felladrin/TinyMistral-248M-SFT-v4's low hallucination and instruction-following capabilities. The resulting model has an incredible performance considering its size.
Evaluation
Found in the Open LLM Leaderboard.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 27.98 |
AI2 Reasoning Challenge (25-Shot) | 24.74 |
HellaSwag (10-Shot) | 27.79 |
MMLU (5-Shot) | 26.12 |
TruthfulQA (0-shot) | 40.12 |
Winogrande (5-shot) | 49.09 |
GSM8k (5-shot) | 0.00 |