leaderboard-pr-bot's picture
Adding Evaluation Results
c3007b6 verified
|
raw
history blame
8.35 kB
metadata
language:
  - en
  - zh
license: llama3.1
library_name: transformers
tags:
  - not-for-all-audiences
datasets:
  - Locutusque/hercules-v6.1
pipeline_tag: text-generation
model-index:
  - name: Hercules-6.1-Llama-3.1-8B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 60.07
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 24.15
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 15.63
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.45
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 3.42
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 29.65
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Locutusque/Hercules-6.1-Llama-3.1-8B
          name: Open LLM Leaderboard

Model Card: Locutusque/Hercules-6.1-Llama-3.1-8B

image/png

Model Description

Hercules-6.1-Llama-3.1-8B is a fine-tuned language model derived from Llama-3.1-8B. It is specifically designed to excel in instruction following, function calls, and conversational interactions across various scientific and technical domains. This fine-tuning has hercules-v6.1 with enhanced abilities in:

  • Complex Instruction Following: Understanding and accurately executing multi-step instructions, even those involving specialized terminology.
  • Function Calling: Seamlessly interpreting and executing function calls, providing appropriate input and output values.
  • Domain-Specific Knowledge: Engaging in informative and educational conversations about Biology, Chemistry, Physics, Mathematics, Medicine, Computer Science, and more.

Intended Uses & Potential Bias

Hercules-6.1-Llama-3.1-8B is well-suited to the following applications:

  • Specialized Chatbots: Creating knowledgeable chatbots and conversational agents in scientific and technical fields.
  • Instructional Assistants: Supporting users with educational and step-by-step guidance in various disciplines.
  • Code Generation and Execution: Facilitating code execution through function calls, aiding in software development and prototyping.

Important Note: Although Hercules-v6.1 is carefully constructed, it's important to be aware that the underlying data sources may contain biases or reflect harmful stereotypes. Use this model with caution and consider additional measures to mitigate potential biases in its responses.

Limitations and Risks

  • Toxicity: The dataset contains toxic or harmful examples.
  • Hallucinations and Factual Errors: Like other language models, Llama-3-Hercules-6.0-8B may generate incorrect or misleading information, especially in specialized domains where it lacks sufficient expertise.
  • Potential for Misuse: The ability to engage in technical conversations and execute function calls could be misused for malicious purposes.

Evaluations

Tasks Version Filter n-shot Metric Value Stderr
agieval_nous 0.0 none acc 0.4427 ± 0.0094
- agieval_aqua_rat 1.0 none 0 acc 0.2913 ± 0.0286
none 0 acc_norm 0.2480 ± 0.0272
- agieval_logiqa_en 1.0 none 0 acc 0.3825 ± 0.0191
none 0 acc_norm 0.3794 ± 0.0190
- agieval_lsat_ar 1.0 none 0 acc 0.2087 ± 0.0269
none 0 acc_norm 0.2043 ± 0.0266
- agieval_lsat_lr 1.0 none 0 acc 0.4431 ± 0.0220
none 0 acc_norm 0.4000 ± 0.0217
- agieval_lsat_rc 1.0 none 0 acc 0.6097 ± 0.0298
none 0 acc_norm 0.5428 ± 0.0304
- agieval_sat_en 1.0 none 0 acc 0.7621 ± 0.0297
none 0 acc_norm 0.6942 ± 0.0322
- agieval_sat_en_without_passage 1.0 none 0 acc 0.4126 ± 0.0344
none 0 acc_norm 0.3641 ± 0.0336
- agieval_sat_math 1.0 none 0 acc 0.4318 ± 0.0335
none 0 acc_norm 0.3500 ± 0.0322
arc_challenge 1.0 none 0 acc 0.5247 ± 0.0146
none 0 acc_norm 0.5606 ± 0.0145
eq_bench 2.1 none 0 eqbench 63.2023 ± 2.6818
none 0 percent_parseable 98.8304 ± 0.8246
gsm8k 3.0 flexible-extract 5 exact_match 0.7801 ± 0.0114
strict-match 5 exact_match 0.7809 ± 0.0114
truthfulqa_mc2 2.0 none 0 acc 0.5389 ± 0.0150

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 22.40
IFEval (0-Shot) 60.07
BBH (3-Shot) 24.15
MATH Lvl 5 (4-Shot) 15.63
GPQA (0-shot) 1.45
MuSR (0-shot) 3.42
MMLU-PRO (5-shot) 29.65