|
--- |
|
base_model: AIRI-Institute/gena-lm-bert-base-t2t-multi |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: mus_promoter-finetuned-lora-bert-base-t2t-multi |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mus_promoter-finetuned-lora-bert-base-t2t-multi |
|
|
|
This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-base-t2t-multi](https://huggingface.co/AIRI-Institute/gena-lm-bert-base-t2t-multi) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0021 |
|
- F1: 1.0 |
|
- Mcc Score: 1.0 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Mcc Score | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:--------:| |
|
| 0.169 | 0.43 | 100 | 0.2552 | 0.9429 | 0.8814 | 0.9375 | |
|
| 0.1379 | 0.85 | 200 | 0.2600 | 0.9600 | 0.9039 | 0.9531 | |
|
| 0.0749 | 1.28 | 300 | 0.1726 | 0.9737 | 0.9373 | 0.9688 | |
|
| 0.0708 | 1.71 | 400 | 0.0171 | 0.9863 | 0.9686 | 0.9844 | |
|
| 0.0579 | 2.14 | 500 | 0.1011 | 0.9863 | 0.9686 | 0.9844 | |
|
| 0.0512 | 2.56 | 600 | 0.0993 | 0.9722 | 0.9385 | 0.9688 | |
|
| 0.0238 | 2.99 | 700 | 0.0065 | 1.0 | 1.0 | 1.0 | |
|
| 0.0108 | 3.42 | 800 | 0.0605 | 0.9863 | 0.9686 | 0.9844 | |
|
| 0.024 | 3.85 | 900 | 0.0029 | 1.0 | 1.0 | 1.0 | |
|
| 0.0178 | 4.27 | 1000 | 0.0021 | 1.0 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|