|
--- |
|
language: |
|
- zh |
|
- en |
|
tags: |
|
- LLaMA2 |
|
- Linly |
|
- Chinese-LLaMA2 |
|
--- |
|
|
|
# Chinese-LLaMA-2-13B |
|
|
|
Linly-Chinese-LLaMA2 基于 LLaMA2进行中文化训练,使用课程学习方法跨语言迁移,词表针对中文重新设计,数据分布更均衡,收敛更稳定。 |
|
|
|
<p align="left"> |
|
训练细节和benchmark指标详见 💻 <a href="https://github.com/CVI-SZU/Linly" target="_blank">Github Repo</a> |
|
</p> |
|
|
|
|
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("Linly-AI/Chinese-LLaMA-2-13B-hf", device_map="cuda:0", torch_dtype=torch.float16, trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("Linly-AI/Chinese-LLaMA-2-13B-hf", use_fast=False, trust_remote_code=True) |
|
prompt = "北京有什么好玩的地方?" |
|
|
|
prompt = f"### Instruction:{prompt.strip()} ### Response:" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0") |
|
generate_ids = model.generate(inputs.input_ids, do_sample=True, max_new_tokens=2048, top_k=10, top_p=0.85, temperature=1, repetition_penalty=1.15, eos_token_id=2, bos_token_id=1, pad_token_id=0) |
|
response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
response = response.lstrip(prompt) |
|
``` |
|
|