nhi_heldout-speaker-exp_JJG503_mms-1b-nhi-adapterft

This model is a fine-tuned version of facebook/mms-1b-all on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9551
  • Wer: 0.5099
  • Cer: 0.1636

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.9259 1.6807 200 1.0631 0.7246 0.2364
0.7325 3.3613 400 0.9573 0.6709 0.2154
0.6496 5.0420 600 0.9066 0.6591 0.2078
0.6303 6.7227 800 0.8995 0.6168 0.1959
0.576 8.4034 1000 0.8594 0.6016 0.1945
0.5455 10.0840 1200 0.7946 0.5847 0.1838
0.5304 11.7647 1400 0.8018 0.5879 0.1833
0.507 13.4454 1600 0.8205 0.5863 0.1883
0.4872 15.1261 1800 0.8448 0.5805 0.1846
0.4867 16.8067 2000 0.8381 0.5782 0.1834
0.4449 18.4874 2200 0.7953 0.5819 0.1827
0.4197 20.1681 2400 0.7872 0.5683 0.1796
0.4286 21.8487 2600 0.7965 0.5479 0.1729
0.4008 23.5294 2800 0.7981 0.5492 0.1729
0.4076 25.2101 3000 0.7909 0.5505 0.1726
0.3888 26.8908 3200 0.7650 0.5581 0.1754
0.3583 28.5714 3400 0.7871 0.5387 0.1702
0.3583 30.2521 3600 0.8008 0.5582 0.1722
0.3613 31.9328 3800 0.8101 0.5522 0.1720
0.3337 33.6134 4000 0.7855 0.5392 0.1667
0.3377 35.2941 4200 0.8145 0.5377 0.1656
0.3176 36.9748 4400 0.8048 0.5357 0.1679
0.2971 38.6555 4600 0.8438 0.5390 0.1713
0.3156 40.3361 4800 0.8106 0.5308 0.1688
0.311 42.0168 5000 0.8293 0.5310 0.1699
0.2884 43.6975 5200 0.8418 0.5367 0.1709
0.2898 45.3782 5400 0.8149 0.5399 0.1715
0.271 47.0588 5600 0.8387 0.5292 0.1650
0.276 48.7395 5800 0.8732 0.5345 0.1677
0.2625 50.4202 6000 0.8321 0.5310 0.1667
0.2632 52.1008 6200 0.8382 0.5252 0.1645
0.2462 53.7815 6400 0.8292 0.5270 0.1666
0.249 55.4622 6600 0.8642 0.5308 0.1682
0.2489 57.1429 6800 0.9214 0.5278 0.1692
0.2445 58.8235 7000 0.8832 0.5326 0.1679
0.2391 60.5042 7200 0.8951 0.5199 0.1678
0.2294 62.1849 7400 0.8613 0.5209 0.1649
0.2242 63.8655 7600 0.8602 0.5178 0.1650
0.2271 65.5462 7800 0.8963 0.5224 0.1690
0.217 67.2269 8000 0.8601 0.5171 0.1648
0.2099 68.9076 8200 0.8603 0.5088 0.1640
0.2097 70.5882 8400 0.8710 0.5166 0.1641
0.2075 72.2689 8600 0.8921 0.5190 0.1637
0.1994 73.9496 8800 0.8738 0.5070 0.1620
0.1962 75.6303 9000 0.8713 0.5109 0.1629
0.194 77.3109 9200 0.8724 0.5187 0.1634
0.1864 78.9916 9400 0.9267 0.5227 0.1648
0.187 80.6723 9600 0.9252 0.5146 0.1649
0.1799 82.3529 9800 0.9085 0.5152 0.1642
0.1868 84.0336 10000 0.9019 0.5139 0.1623
0.1694 85.7143 10200 0.9344 0.5174 0.1646
0.1754 87.3950 10400 0.9643 0.5121 0.1636
0.1736 89.0756 10600 0.9524 0.5130 0.1645
0.1652 90.7563 10800 0.9473 0.5138 0.1649
0.1789 92.4370 11000 0.9439 0.5107 0.1635
0.1659 94.1176 11200 0.9515 0.5146 0.1645
0.1683 95.7983 11400 0.9558 0.5119 0.1631
0.163 97.4790 11600 0.9587 0.5119 0.1637
0.1596 99.1597 11800 0.9551 0.5099 0.1636

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.4.0
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for Lguyogiro/nhi_heldout-speaker-exp_JJG503_mms-1b-nhi-adapterft

Finetuned
(249)
this model

Evaluation results