SentenceTransformer based on intfloat/multilingual-e5-base
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base on the grag-go-idf-only-pos dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Lettria/test_finetuned_model")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
EmbeddingSimEval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | nan |
spearman_cosine | nan |
Binary Classification
- Dataset:
BinaryClassifEval
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8 |
cosine_accuracy_threshold | 0.8309 |
cosine_f1 | 0.8889 |
cosine_f1_threshold | 0.8309 |
cosine_precision | 1.0 |
cosine_recall | 0.8 |
cosine_ap | 1.0 |
cosine_mcc | 0.0 |
Training Details
Training Dataset
grag-go-idf-only-pos
- Dataset: grag-go-idf-only-pos at 9743952
- Size: 5,302 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 142 tokens
- mean: 260.2 tokens
- max: 340 tokens
- min: 32 tokens
- mean: 37.2 tokens
- max: 44 tokens
- 1: 100.00%
- Samples:
sentence1 sentence2 label Procédures et démarches: Les dossiers peuvent être déposés toute l'année sur mesdemarches.iledefrance.fr préalablement au commencement du projet. Un démarrage anticipé peut être autorisé, mais il ne préjuge pas de la décision de la Commission permanente de l’octroi de la subvention.Le candidat qui présente plus d’un projet, doit réaliser autant de dossiers de candidature que de projets.Après instruction des dossiers par les services régionaux, l'attribution définitive des aides est votée en commission permanente.
Bénéficiaires: Association - Régie par la loi de 1901, Professionnel - ETI < 5000, Professionnel - GE > 5000, Professionnel - PME < 250, Professionnel - TPE < 10, Collectivité ou institution - Autre (GIP, copropriété, EPA...), Collectivité ou institution - Bailleurs sociaux, Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution - Communes de < 2000 hab, Collectivité ou institution...Association --- UTILISE ---> mesdemarches.iledefrance.fr
1
Procédures et démarches: Merci de contacter le service concerné au sein de la direction de la culture, afin de vous accompagner dans la constitution de votre dossier. Le dépôt du dossier à la Région doit intervenir obligatoirement avant le début des travaux (ou avant l'engagement des dépenses d'acquisition).La demande d'aide doit faire l’objet d’un dossier de candidature complet. Le projet objet de la demande d’aide doit être financé à hauteur de 20% minimum par la structure porteuse.
Bénéficiaires: Association - Fondation, Association - ONG, Association - Régie par la loi de 1901, Collectivité ou institution - Autre (GIP, copropriété, EPA...), Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution - Communes de < 2000 hab, Collectivité ou institution - Communes de > 20 000 hab, Collectivité ou institution - Département, Collectivité ou institution - EPT / Métropole du Grand Paris, Collec...Collectivité ou institution - Communes de 10 000 à 20 000 hab --- BÉNÉFICIAIRE ---> Région
1
Type de project: L’excès de précipitations tout au long de l’année a conduit à une chute spectaculaire des rendements des céréales d’été et des protéagineux (blé, orge, pois, féverole, etc.) que produisent 90% des agriculteurs d’Île-de-France, historique grenier à blé du pays. Tributaires naturels du fleurissement des cultures, les apiculteurs professionnels de la région ont également souffert de ces dérèglements climatiques.La Région accompagne les exploitations concernées en leur apportant une aide exceptionnelle.
excès de précipitations --- DIMINUE ---> rendements des protéagineux
1
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
grag-go-idf-only-pos
- Dataset: grag-go-idf-only-pos at 9743952
- Size: 1,325 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 31 tokens
- mean: 86.2 tokens
- max: 160 tokens
- min: 25 tokens
- mean: 28.6 tokens
- max: 33 tokens
- 1: 100.00%
- Samples:
sentence1 sentence2 label Date de début: non précisée
Date de fin (clôture): non précisée
Date de début de la future campagne: non préciséeDate de fin --- EST ---> non précisée
1
Type de project: L’action porte sur 3 dimensions constituant un dispositif global d’accompagnement des jeunes filles vers la réussite de leurs études et le développement de leurs ambitions : Mentorat par salariés d’entreprises et mentors d’établissement scolaires ou bénévole de l’association. Le mentor d’entreprise joue le rôle de passeur social pour la jeune fille.Accompagnement collectif qui au-delà d’être un soutien au bon fonctionnement de la relation mentor-filleule crée et organise un programme d’animations (plus de 200 activités en présentiel et digital l’an dernier en Île-de-France) varié couvrant les leviers sur lesquels agit l’association.Accompagnement par soutien matériel.
action --- INCLUT ---> mentorat
1
Date de début: non précisée
Date de fin (clôture): non précisée
Date de début de la future campagne: non préciséeDate de début de la future campagne --- EST ---> non précisée
1
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 2per_device_eval_batch_size
: 2num_train_epochs
: 1use_cpu
: Truedataloader_pin_memory
: False
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 2per_device_eval_batch_size
: 2per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Trueuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Falsedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | EmbeddingSimEval_spearman_cosine | BinaryClassifEval_cosine_ap |
---|---|---|---|---|---|
0.6667 | 2 | 0.6283 | - | - | - |
1.0 | 3 | - | 0.1791 | nan | 1.0 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cpu
- Accelerate: 1.4.0
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Lettria/test_finetuned_model
Base model
intfloat/multilingual-e5-baseEvaluation results
- Pearson Cosine on EmbeddingSimEvalself-reportedNaN
- Spearman Cosine on EmbeddingSimEvalself-reportedNaN
- Cosine Accuracy on BinaryClassifEvalself-reported0.800
- Cosine Accuracy Threshold on BinaryClassifEvalself-reported0.831
- Cosine F1 on BinaryClassifEvalself-reported0.889
- Cosine F1 Threshold on BinaryClassifEvalself-reported0.831
- Cosine Precision on BinaryClassifEvalself-reported1.000
- Cosine Recall on BinaryClassifEvalself-reported0.800
- Cosine Ap on BinaryClassifEvalself-reported1.000
- Cosine Mcc on BinaryClassifEvalself-reported0.000