my_distilbert_model / README.md
Lepolesa's picture
End of training
96986b1
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - rotten_tomatoes
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: my_distilbert_model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: rotten_tomatoes
          type: rotten_tomatoes
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.849906191369606
          - name: F1
            type: f1
            value: 0.8499040780048225
          - name: Precision
            type: precision
            value: 0.8499258993286938
          - name: Recall
            type: recall
            value: 0.849906191369606

my_distilbert_model

This model is a fine-tuned version of distilbert-base-uncased on the rotten_tomatoes dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5344
  • Accuracy: 0.8499
  • F1: 0.8499
  • Precision: 0.8499
  • Recall: 0.8499

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4179 1.0 534 0.3769 0.8415 0.8413 0.8428 0.8415
0.2395 2.0 1068 0.4314 0.8490 0.8490 0.8490 0.8490
0.1638 3.0 1602 0.5344 0.8499 0.8499 0.8499 0.8499

Framework versions

  • Transformers 4.33.2
  • Pytorch 1.10.0
  • Datasets 2.14.5
  • Tokenizers 0.13.3