my_distilbert_model / README.md
Lepolesa's picture
End of training
96986b1
|
raw
history blame
2.26 kB
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- rotten_tomatoes
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: my_distilbert_model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: rotten_tomatoes
type: rotten_tomatoes
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.849906191369606
- name: F1
type: f1
value: 0.8499040780048225
- name: Precision
type: precision
value: 0.8499258993286938
- name: Recall
type: recall
value: 0.849906191369606
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_distilbert_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5344
- Accuracy: 0.8499
- F1: 0.8499
- Precision: 0.8499
- Recall: 0.8499
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.4179 | 1.0 | 534 | 0.3769 | 0.8415 | 0.8413 | 0.8428 | 0.8415 |
| 0.2395 | 2.0 | 1068 | 0.4314 | 0.8490 | 0.8490 | 0.8490 | 0.8490 |
| 0.1638 | 3.0 | 1602 | 0.5344 | 0.8499 | 0.8499 | 0.8499 | 0.8499 |
### Framework versions
- Transformers 4.33.2
- Pytorch 1.10.0
- Datasets 2.14.5
- Tokenizers 0.13.3