|
--- |
|
base_model: LemiSt/SmolLM-135M-de |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
model-index: |
|
- name: SmolLM-135M-instruct-de |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: LemiSt/SmolLM-135M-de |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: GPT2Tokenizer |
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
push_dataset_to_hub: |
|
datasets: |
|
- path: smollm_dataset.json |
|
type: sharegpt |
|
conversation: chatml |
|
chat_template: chatml |
|
default_system_prompt: "Du bist ein hilfreicher KI-Assistent." |
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
adapter: qlora |
|
lora_model_dir: |
|
sequence_len: 2048 |
|
sample_packing: true |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
wandb_project: smollm-135m-de-sft-qlora |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
output_dir: ./outputs/smollm-135m-sft-qlora-out |
|
hub_model_id: LemiSt/SmolLM-135M-instruct-de |
|
hub_strategy: end |
|
gradient_accumulation_steps: 16 |
|
micro_batch_size: 2 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
torchdistx_path: |
|
lr_scheduler: cosine |
|
learning_rate: 0.003 |
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
gptq_groupsize: |
|
gptq_model_v1: |
|
warmup_steps: 20 |
|
evals_per_epoch: 4 |
|
saves_per_epoch: 4 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.1 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<|endoftext|>" |
|
eos_token: "<|endoftext|>" |
|
unk_token: "<|endoftext|>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# SmolLM-135M-instruct-de |
|
|
|
MERGED VERSION: [LemiSt/SmolLM-135M-instruct-de-merged](https://huggingface.co/LemiSt/SmolLM-135M-instruct-de-merged) |
|
|
|
This model is a fine-tuned version of [LemiSt/SmolLM-135M-de](https://huggingface.co/LemiSt/SmolLM-135M-de) on an internal testing dataset with general chat examples. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7453 |
|
|
|
## Model description |
|
|
|
For more information, see the mode card of the [base model](https://huggingface.co/LemiSt/SmolLM-135M-de). This adapter was trained using qlora at rank 32 with alpha 16, applying a dataset of around 200k german chat samples for two epochs. |
|
|
|
## Intended uses & limitations |
|
|
|
Mainly playing around with tiny chat models - while the output is generally intact German and the model somewhat follows instructions, it makes too many mistakes to be deployed in a real world setting. |
|
|
|
### Usage example |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
checkpoint = "LemiSt/SmolLM-135M-instruct-de" |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map=device, torch_dtype=torch.bfloat16) |
|
messages = [ |
|
{"role": "system", "content": "Du bist ein hilfreicher Assistent."}, |
|
{"role": "user", "content": "Wie viele Hände hat ein normaler Mensch?"} |
|
] |
|
inputs = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt", add_generation_prompt=True).to(device) |
|
outputs = model.generate(inputs, max_new_tokens=256, do_sample=True, temperature=0.4, top_p=0.9, repetition_penalty=1.1, top_k=512) |
|
print(tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)) |
|
``` |
|
## Training and evaluation data |
|
|
|
Internal dataset which was compiled for another experiment. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.003 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 20 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.6406 | 0.0005 | 1 | 1.6172 | |
|
| 0.8219 | 0.2497 | 501 | 0.8901 | |
|
| 0.8646 | 0.4995 | 1002 | 0.8370 | |
|
| 0.8651 | 0.7492 | 1503 | 0.8052 | |
|
| 0.7231 | 0.9989 | 2004 | 0.7827 | |
|
| 0.7632 | 1.2468 | 2505 | 0.7673 | |
|
| 0.7543 | 1.4967 | 3006 | 0.7536 | |
|
| 0.7782 | 1.7466 | 3507 | 0.7469 | |
|
| 0.6724 | 1.9966 | 4008 | 0.7453 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |