Wav2Vec2_xls_r_openslr_Hi_V2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the Harveenchadha/indic-voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3184
  • Wer: 0.3104
  • Cer: 0.0958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
7.1097 0.48 300 0.9965 3.3989 1.0
3.0235 0.96 600 0.3163 1.3183 0.7977
1.1419 1.44 900 0.1913 0.6416 0.5543
0.8242 1.92 1200 0.1608 0.5063 0.4804
0.6876 2.56 1600 0.1387 0.4401 0.4280
0.5868 3.21 2000 0.1249 0.3940 0.3907
0.5285 3.85 2400 0.1200 0.3661 0.3763
0.5 4.49 2800 0.3528 0.3610 0.1136
0.4538 5.13 3200 0.3403 0.3485 0.1086
0.4165 5.77 3600 0.3335 0.3439 0.1062
0.3989 6.41 4000 0.3264 0.3340 0.1036
0.3679 7.05 4400 0.3256 0.3287 0.1013
0.3517 7.69 4800 0.3212 0.3223 0.1002
0.3357 8.33 5200 0.3173 0.3196 0.0986
0.3225 8.97 5600 0.3142 0.3177 0.0985
0.3057 9.62 6000 0.3199 0.3156 0.0975
0.2972 10.26 6400 0.3139 0.3128 0.0967
0.2881 10.9 6800 0.3184 0.3107 0.0957
0.2791 11.54 7200 0.3184 0.3104 0.0958

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
49
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.