对数据任务类型分类,比如"情感分析"、"文本分类"、"翻译","总结"、"数学问答"....
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from tqdm import tqdm
from loguru import logger
model_name = "Laurie/Qwen2.5-7b-data-classification"
# 加载模型和 tokenizer,同时调整 padding_side 为 left(适用于 decoder-only 模型)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
# attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") # batch 推理时要左填充
# 对话模板
system_message = [{"role": "system", "content": "你是一个数据分类专家,请根据对话内容判断其所属的类别。"}]
last_query = [{"role": "user", "content": "现在请输出你的判断结果:"}]
def prepare_text(messages: list[dict]) -> str:
"""
将 messages 中的 "from"/"value" 键转为 "role"/"content",并构造完整对话文本
"""
messages = [{"role": item["from"], "content": item["value"]} for item in messages]
messages = system_message + messages + last_query
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
return text
def generate_task_types_batch(messages_batch: list[list[dict]]) -> list[str]:
"""
对一个 batch 的对话列表进行推理生成,并返回每个对话中 assistant 的回答部分
"""
# 将每个消息列表转换为完整文本
texts = [prepare_text(messages) for messages in messages_batch]
# 使用批量编码,并进行 padding 以适应批量输入
model_inputs = tokenizer(
texts,
return_tensors="pt",
padding=True,
truncation=True
).to(model.device)
with torch.no_grad():
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32,
eos_token_id=[151643, 151645],
pad_token_id=151643,
do_sample=True,
repetition_penalty=1.05,
temperature=0.7,
top_p=0.8,
top_k=20
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
task_types = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
return task_types
def process_json(json_path: str, save_path: str, batch_size: int = 8):
"""
读取 JSON 文件,对数据进行批量推理处理,
并将结果写回保存。
"""
with open(json_path, "r", encoding="utf-8") as f:
data = json.load(f)
# 分批处理,batch_size 可根据 GPU 显存情况进行调整
for i in tqdm(range(0, len(data_slice), batch_size)):
batch = data_slice[i : i + batch_size]
conversations_batch = [item["conversations"] for item in batch]
task_types = generate_task_types_batch(conversations_batch)
for item, answer in zip(batch, task_types):
item["task_type"] = answer
with open(save_path, "w", encoding="utf-8") as f:
json.dump(data_slice, f, ensure_ascii=False, indent=4)
logger.info(f"已处理 {len(data_slice)} 条数据,保存到 {save_path}")
if __name__ == "__main__":
json_path = "./qwen_bench_300k.json"
save_path = "./qwen_bench_300k_cls.json"
process_json(json_path, save_path, batch_size=16)
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for Laurie/Qwen2.5-7b-data-classification
Base model
Qwen/Qwen2.5-7B