wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4634
  • Wer: 0.3367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.6019 1.0 500 2.4586 1.0
0.9594 2.01 1000 0.5023 0.5122
0.4324 3.01 1500 0.4808 0.4703
0.2991 4.02 2000 0.4098 0.4208
0.2257 5.02 2500 0.4883 0.4264
0.18 6.02 3000 0.4441 0.3914
0.1524 7.03 3500 0.4360 0.3869
0.1315 8.03 4000 0.4448 0.3783
0.1101 9.04 4500 0.4570 0.3704
0.1017 10.04 5000 0.4252 0.3680
0.0863 11.04 5500 0.4492 0.3606
0.0798 12.05 6000 0.4241 0.3604
0.0688 13.05 6500 0.4585 0.3535
0.0608 14.06 7000 0.4491 0.3488
0.0524 15.06 7500 0.4550 0.3456
0.0502 16.06 8000 0.4570 0.3453
0.0458 17.07 8500 0.4680 0.3421
0.0395 18.07 9000 0.4663 0.3390
0.0352 19.08 9500 0.4634 0.3367

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 1.18.3
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
94.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Lasion/wav2vec2-base-timit-demo-google-colab

Finetuned
(699)
this model

Dataset used to train Lasion/wav2vec2-base-timit-demo-google-colab

Evaluation results