metadata
tags:
- translation
- torch==1.8.0
widget:
- text: Inference Unavailable
marianmt-th-zh_cn
- source languages: th
- target languages: zh_cn
- dataset:
- model: transformer-align
- pre-processing: normalization + SentencePiece
- test set scores: 15.53
Training
Training scripts from LalitaDeelert/NLP-ZH_TH-Project. Experiments tracked at cstorm125/marianmt-th-zh_cn.
export WANDB_PROJECT=marianmt-th-zh_cn
python train_model.py --input_fname ../data/v1/Train.csv \\\\\\\\
\\\\t--output_dir ../models/marianmt-th-zh_cn \\\\\\\\
\\\\t--source_lang th --target_lang zh \\\\\\\\
\\\\t--metric_tokenize zh --fp16
Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Lalita/marianmt-zh_cn-th")
model = AutoModelForSeq2SeqLM.from_pretrained("Lalita/marianmt-zh_cn-th").cpu()
src_text = [
'ฉันรักคุณ',
'ฉันอยากกินข้าว',
]
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
print([tokenizer.decode(t, skip_special_tokens=True) for t in translated])
> ['我爱你', '我想吃饭。']
Requirements
transformers==4.6.0
torch==1.8.0