ED_small_cv_v2

This model is a fine-tuned version of on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0688
  • Cer: 0.0677
  • Wer: 0.1598
  • Mer: 0.1565
  • Wil: 0.2593
  • Wip: 0.7407
  • Hits: 127573
  • Substitutions: 17637
  • Deletions: 2971
  • Insertions: 3069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 128
  • eval_batch_size: 64
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 512
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 15000
  • num_epochs: 70.0

Training results

Training Loss Epoch Step Cer Deletions Hits Insertions Validation Loss Mer Substitutions Wer Wil Wip
1.7038 5.0 14885 0.1731 6463 103703 7394 1.5150 0.3334 38015 0.3501 0.5133 0.4867
1.6051 6.0 17862 0.1512 6309 107805 6257 1.4257 0.3020 34067 0.3147 0.4705 0.5295
1.5396 7.0 20839 0.1368 5262 110900 6029 1.3715 0.2809 32019 0.2923 0.4428 0.5572
1.4436 8.0 23816 0.1299 5464 112866 5686 1.3285 0.2665 29851 0.2767 0.4207 0.5793
1.4287 9.0 26793 0.1241 4793 114249 5680 1.3090 0.2575 29139 0.2673 0.4091 0.5909
1.395 10.0 29770 0.1200 4698 115580 5505 1.2842 0.2479 27903 0.2572 0.3949 0.6051
1.3668 11.0 32747 0.1111 4400 117281 4991 1.2510 0.2343 26500 0.2422 0.3761 0.6239
1.3238 12.0 35724 0.1064 4560 117845 4500 1.2363 0.2282 25776 0.2351 0.3673 0.6327
1.3133 13.0 38701 0.1028 4173 118971 4613 1.2215 0.2214 25037 0.2283 0.3573 0.6427
1.2968 14.0 41678 0.0995 3937 119798 4466 1.2026 0.2152 24446 0.2217 0.3487 0.6513
1.2783 15.0 44655 0.0974 4071 120231 4295 1.1939 0.2115 23879 0.2176 0.3427 0.6573
1.2359 16.0 47632 0.0961 3946 120640 4313 1.1884 0.2089 23595 0.2150 0.3388 0.6612
1.2543 17.0 50609 0.0939 3757 121623 4476 1.1743 0.2033 22801 0.2094 0.3296 0.6704
1.2245 18.0 53586 0.0919 3981 121522 3944 1.1690 0.2012 22678 0.2065 0.3273 0.6727
1.2 19.0 56563 0.0903 3819 122029 3995 1.1626 0.1981 22333 0.2034 0.3226 0.6774
1.1964 20.0 59540 0.0916 3822 122170 4154 1.1598 0.1980 22189 0.2036 0.3218 0.6782
1.1822 21.0 62517 0.0871 3630 122825 3981 1.1471 0.1928 21726 0.1980 0.3146 0.6854
1.1758 22.0 65494 0.0862 3556 123114 3918 1.1413 0.1906 21511 0.1956 0.3114 0.6886
1.1735 23.0 68471 0.0847 3431 123623 4013 1.1381 0.1877 21127 0.1928 0.3067 0.6933
1.1556 24.0 71448 0.0839 3668 123854 3698 1.1282 0.1845 20659 0.1891 0.3015 0.6985
1.1538 25.0 74425 0.0819 3475 124201 3716 1.1240 0.1823 20505 0.1869 0.2986 0.7014
1.1078 26.0 77402 0.0819 3410 124426 3751 1.1259 0.1810 20345 0.1856 0.2965 0.7035
1.1539 27.0 80379 0.0805 3333 124879 3716 1.1152 0.1779 19969 0.1823 0.2916 0.7084
1.1432 54.0 80406 1.1113 0.0787 0.1790 0.1747 0.2868 0.7132 125277 19604 3300 3619
1.1171 55.0 81895 1.0912 0.0744 0.1713 0.1676 0.2763 0.7237 126048 18870 3263 3245
1.1027 56.0 83384 1.0874 0.0740 0.1696 0.1659 0.2736 0.7264 126362 18663 3156 3309
1.0827 57.0 84873 1.0865 0.0725 0.1690 0.1654 0.2728 0.7272 126356 18599 3226 3214
1.0794 58.0 86362 1.0837 0.0717 0.1665 0.1629 0.2691 0.7309 126790 18361 3030 3287
1.0585 59.0 87851 1.0816 0.0710 0.1664 0.1629 0.2688 0.7312 126738 18285 3158 3218
1.0549 60.0 89340 1.0785 0.0707 0.1651 0.1616 0.2671 0.7329 126913 18198 3070 3195
1.0708 61.0 90829 1.0795 0.0704 0.1649 0.1614 0.2667 0.7333 126928 18157 3096 3178
1.0674 62.0 92318 1.0767 0.0699 0.1638 0.1605 0.2650 0.7350 126981 17994 3206 3071
1.0709 63.0 93807 1.0738 0.0699 0.1638 0.1605 0.2652 0.7348 126999 18030 3152 3096
1.0672 64.0 95296 1.0734 0.0687 0.1622 0.1588 0.2630 0.7370 127257 17925 2999 3105
1.0716 65.0 96785 1.0712 0.0685 0.1610 0.1577 0.2613 0.7387 127412 17804 2965 3082
1.0664 66.0 98274 1.0723 0.0686 0.1613 0.1581 0.2618 0.7382 127312 17817 3052 3039
1.0452 67.0 99763 1.0703 0.0681 0.1605 0.1572 0.2605 0.7395 127444 17742 2995 3041
1.0318 68.0 101252 1.0695 0.0679 0.1603 0.1571 0.2601 0.7399 127479 17693 3009 3049
1.0341 69.0 102741 1.0686 0.0677 0.1597 0.1565 0.2590 0.7410 127600 17599 2982 3088
1.0338 70.0 104230 1.0688 0.0677 0.1598 0.1565 0.2593 0.7407 127573 17637 2971 3069

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.0+rocm5.6
  • Datasets 2.18.0
  • Tokenizers 0.15.2

Wandb run

https://wandb.ai/butspeechfit/decred_commonvoice_en/runs/ED_small_cv_v2_continue3

Downloads last month
42
Safetensors
Model size
35.8M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .