Edit model card

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6171
  • Answer: {'precision': 0.8831168831168831, 'recall': 0.9155446756425949, 'f1': 0.8990384615384616, 'number': 817}
  • Header: {'precision': 0.6153846153846154, 'recall': 0.47058823529411764, 'f1': 0.5333333333333333, 'number': 119}
  • Question: {'precision': 0.8849557522123894, 'recall': 0.9285051067780873, 'f1': 0.9062075215224287, 'number': 1077}
  • Overall Precision: 0.8723
  • Overall Recall: 0.8962
  • Overall F1: 0.8841
  • Overall Accuracy: 0.8029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.2349 10.53 200 1.1246 {'precision': 0.8461538461538461, 'recall': 0.8616891064871481, 'f1': 0.8538508186779866, 'number': 817} {'precision': 0.5871559633027523, 'recall': 0.5378151260504201, 'f1': 0.5614035087719299, 'number': 119} {'precision': 0.8546861564918314, 'recall': 0.9229340761374187, 'f1': 0.8875, 'number': 1077} 0.8375 0.8753 0.8560 0.7887
0.0404 21.05 400 1.4684 {'precision': 0.8298109010011123, 'recall': 0.9130966952264382, 'f1': 0.8694638694638694, 'number': 817} {'precision': 0.5688073394495413, 'recall': 0.5210084033613446, 'f1': 0.543859649122807, 'number': 119} {'precision': 0.879231473010064, 'recall': 0.8922934076137419, 'f1': 0.8857142857142858, 'number': 1077} 0.8420 0.8788 0.8600 0.7863
0.0121 31.58 600 1.6187 {'precision': 0.852112676056338, 'recall': 0.8886168910648715, 'f1': 0.8699820251647693, 'number': 817} {'precision': 0.5775862068965517, 'recall': 0.5630252100840336, 'f1': 0.5702127659574467, 'number': 119} {'precision': 0.8789237668161435, 'recall': 0.9099350046425255, 'f1': 0.8941605839416058, 'number': 1077} 0.8512 0.8808 0.8657 0.7944
0.0071 42.11 800 1.6262 {'precision': 0.8503480278422274, 'recall': 0.8971848225214198, 'f1': 0.8731387730792138, 'number': 817} {'precision': 0.5714285714285714, 'recall': 0.47058823529411764, 'f1': 0.5161290322580646, 'number': 119} {'precision': 0.895117540687161, 'recall': 0.9192200557103064, 'f1': 0.9070087036188731, 'number': 1077} 0.8611 0.8838 0.8723 0.7929
0.0052 52.63 1000 1.6864 {'precision': 0.8615751789976134, 'recall': 0.8837209302325582, 'f1': 0.8725075528700906, 'number': 817} {'precision': 0.52, 'recall': 0.5462184873949579, 'f1': 0.5327868852459017, 'number': 119} {'precision': 0.8842297174111212, 'recall': 0.9006499535747446, 'f1': 0.8923643054277829, 'number': 1077} 0.8529 0.8728 0.8628 0.7844
0.0022 63.16 1200 1.5608 {'precision': 0.8601895734597157, 'recall': 0.8886168910648715, 'f1': 0.8741721854304636, 'number': 817} {'precision': 0.6896551724137931, 'recall': 0.5042016806722689, 'f1': 0.5825242718446602, 'number': 119} {'precision': 0.8609215017064846, 'recall': 0.9368616527390901, 'f1': 0.897287683414851, 'number': 1077} 0.8535 0.8917 0.8722 0.7973
0.0018 73.68 1400 1.6781 {'precision': 0.8458904109589042, 'recall': 0.9069767441860465, 'f1': 0.8753691671588896, 'number': 817} {'precision': 0.6129032258064516, 'recall': 0.4789915966386555, 'f1': 0.5377358490566039, 'number': 119} {'precision': 0.874447391688771, 'recall': 0.9182915506035283, 'f1': 0.8958333333333334, 'number': 1077} 0.8510 0.8877 0.8690 0.7922
0.0014 84.21 1600 1.7078 {'precision': 0.8706293706293706, 'recall': 0.9143206854345165, 'f1': 0.8919402985074627, 'number': 817} {'precision': 0.6421052631578947, 'recall': 0.5126050420168067, 'f1': 0.5700934579439252, 'number': 119} {'precision': 0.8945454545454545, 'recall': 0.9136490250696379, 'f1': 0.9039963252181902, 'number': 1077} 0.8729 0.8902 0.8815 0.8051
0.0006 94.74 1800 1.6171 {'precision': 0.8831168831168831, 'recall': 0.9155446756425949, 'f1': 0.8990384615384616, 'number': 817} {'precision': 0.6153846153846154, 'recall': 0.47058823529411764, 'f1': 0.5333333333333333, 'number': 119} {'precision': 0.8849557522123894, 'recall': 0.9285051067780873, 'f1': 0.9062075215224287, 'number': 1077} 0.8723 0.8962 0.8841 0.8029
0.0003 105.26 2000 1.7091 {'precision': 0.8490990990990991, 'recall': 0.9228886168910648, 'f1': 0.8844574780058652, 'number': 817} {'precision': 0.5959595959595959, 'recall': 0.4957983193277311, 'f1': 0.5412844036697246, 'number': 119} {'precision': 0.8993536472760849, 'recall': 0.904363974001857, 'f1': 0.9018518518518519, 'number': 1077} 0.8633 0.8877 0.8753 0.8047
0.0003 115.79 2200 1.6547 {'precision': 0.8760233918128655, 'recall': 0.9167686658506732, 'f1': 0.8959330143540669, 'number': 817} {'precision': 0.6170212765957447, 'recall': 0.48739495798319327, 'f1': 0.5446009389671361, 'number': 119} {'precision': 0.8952122854561879, 'recall': 0.9201485608170845, 'f1': 0.9075091575091575, 'number': 1077} 0.8745 0.8932 0.8838 0.8080
0.0002 126.32 2400 1.6868 {'precision': 0.8633754305396096, 'recall': 0.9204406364749081, 'f1': 0.8909952606635071, 'number': 817} {'precision': 0.6020408163265306, 'recall': 0.4957983193277311, 'f1': 0.543778801843318, 'number': 119} {'precision': 0.8884924174843889, 'recall': 0.924791086350975, 'f1': 0.9062784349408554, 'number': 1077} 0.8646 0.8977 0.8808 0.8059

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cpu
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
22
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LaFeeSalomette/lilt-en-funsd

Finetuned
(43)
this model