|
--- |
|
license: mit |
|
tags: |
|
- decompile |
|
- binary |
|
--- |
|
|
|
### 1. Introduction of LLM4Decompile |
|
|
|
LLM4Decompile aims to decompile x86 assembly instructions into C. The newly released V1.5 series are trained with a larger dataset (15B tokens) and a maximum token length of 4,096, with remarkable performance (up to 100% improvement) compared to the previous model. |
|
|
|
- **Github Repository:** [LLM4Decompile](https://github.com/albertan017/LLM4Decompile) |
|
|
|
|
|
### 2. Evaluation Results |
|
|
|
| Metrics | Re-executability Rate | | | | | Edit Similarity | | | | | |
|
|:-----------------------:|:---------------------:|:-------:|:-------:|:-------:|:-------:|:---------------:|:-------:|:-------:|:-------:|:-------:| |
|
| Optimization Level | O0 | O1 | O2 | O3 | AVG | O0 | O1 | O2 | O3 | AVG | |
|
| LLM4Decompile-End-6.7B | 0.6805 | 0.3951 | 0.3671 | 0.3720 | 0.4537 | 0.1557 | 0.1292 | 0.1293 | 0.1269 | 0.1353 | |
|
| Ghidra | 0.3476 | 0.1646 | 0.1524 | 0.1402 | 0.2012 | 0.0699 | 0.0613 | 0.0619 | 0.0547 | 0.0620 | |
|
| +GPT-4o | 0.4695 | 0.3415 | 0.2866 | 0.3110 | 0.3522 | 0.0660 | 0.0563 | 0.0567 | 0.0499 | 0.0572 | |
|
| +LLM4Decompile-Ref-1.3B | 0.6890 | 0.3720 | 0.4085 | 0.3720 | 0.4604 | 0.1517 | 0.1325 | 0.1292 | 0.1267 | 0.1350 | |
|
| +LLM4Decompile-Ref-6.7B | 0.7439 | 0.4695 | 0.4756 | 0.4207 | 0.5274 | 0.1559 | 0.1353 | 0.1342 | 0.1273 | 0.1382 | |
|
| +LLM4Decompile-Ref-33B | 0.7073 | 0.4756 | 0.4390 | 0.4146 | 0.5091 | 0.1540 | 0.1379 | 0.1363 | 0.1307 | 0.1397 | |
|
|
|
### 3. How to Use |
|
Here is an example of how to use our model (Only for V2. For previous models, please check the corresponding model page at HF). |
|
|
|
1. Install Ghidra |
|
Download [Ghidra](https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_11.0.3_build/ghidra_11.0.3_PUBLIC_20240410.zip) to the current folder. You can also check the [page](https://github.com/NationalSecurityAgency/ghidra/releases) for other versions. Unzip the package to the current folder. |
|
In bash, you can use the following: |
|
```bash |
|
cd LLM4Decompile/ghidra |
|
wget https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_11.0.3_build/ghidra_11.0.3_PUBLIC_20240410.zip |
|
unzip ghidra_11.0.3_PUBLIC_20240410.zip |
|
``` |
|
2. Install Java-SDK-17 |
|
Ghidra 11 is dependent on Java-SDK-17, a simple way to install the SDK on Ubuntu: |
|
```bash |
|
apt-get update |
|
apt-get upgrade |
|
apt install openjdk-17-jdk openjdk-17-jre |
|
``` |
|
Please check [Ghidra install guide](https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/Ghidra_11.1.1_build/GhidraDocs/InstallationGuide.html) for other platforms. |
|
|
|
3. Use Ghidra Headless to decompile binary (demo.py) |
|
|
|
Note: **Replace** func0 with the function name you want to decompile. |
|
|
|
**Preprocessing:** Compile the C code into binary, and disassemble the binary into assembly instructions. |
|
```python |
|
import os |
|
import subprocess |
|
from tqdm import tqdm,trange |
|
|
|
OPT = ["O0", "O1", "O2", "O3"] |
|
timeout_duration = 10 |
|
|
|
ghidra_path = "./ghidra_11.0.3_PUBLIC/support/analyzeHeadless"#path to the headless analyzer, change the path accordingly |
|
postscript = "./decompile.py"#path to the decompiler helper function, change the path accordingly |
|
project_path = "."#path to temp folder for analysis, change the path accordingly |
|
project_name = "tmp_ghidra_proj" |
|
func_path = "../samples/sample.c"#path to c code for compiling and decompiling, change the path accordingly |
|
fileName = "sample" |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
pid = os.getpid() |
|
asm_all = {} |
|
for opt in [OPT[0]]: |
|
executable_path = os.path.join(temp_dir, f"{pid}_{opt}.o") |
|
cmd = f'gcc -{opt} -o {executable_path} {func_path} -lm' |
|
subprocess.run( |
|
cmd.split(' '), |
|
check=True, |
|
stdout=subprocess.DEVNULL, # Suppress stdout |
|
stderr=subprocess.DEVNULL, # Suppress stderr |
|
timeout=timeout_duration, |
|
) |
|
|
|
output_path = os.path.join(temp_dir, f"{pid}_{opt}.c") |
|
command = [ |
|
ghidra_path, |
|
temp_dir, |
|
project_name, |
|
"-import", executable_path, |
|
"-postScript", postscript, output_path, |
|
"-deleteProject", # WARNING: This will delete the project after analysis |
|
] |
|
result = subprocess.run(command, text=True, capture_output=True, check=True) |
|
with open(output_path,'r') as f: |
|
c_decompile = f.read() |
|
c_func = [] |
|
flag = 0 |
|
for line in c_decompile.split('\n'): |
|
if "Function: func0" in line:#**Replace** func0 with the function name you want to decompile. |
|
flag = 1 |
|
c_func.append(line) |
|
continue |
|
if flag: |
|
if '// Function:' in line: |
|
if len(c_func) > 1: |
|
break |
|
c_func.append(line) |
|
if flag == 0: |
|
raise ValueError('bad case no function found') |
|
for idx_tmp in range(1,len(c_func)):##########remove the comments |
|
if 'func0' in c_func[idx_tmp]: |
|
break |
|
c_func = c_func[idx_tmp:] |
|
input_asm = '\n'.join(c_func).strip() |
|
|
|
before = f"# This is the assembly code:\n"#prompt |
|
after = "\n# What is the source code?\n"#prompt |
|
input_asm_prompt = before+input_asm.strip()+after |
|
with open(fileName +'_' + opt +'.pseudo','w',encoding='utf-8') as f: |
|
f.write(input_asm_prompt) |
|
``` |
|
|
|
Ghidra pseudo-code may look like this: |
|
```c |
|
undefined4 func0(float param_1,long param_2,int param_3) |
|
{ |
|
int local_28; |
|
int local_24; |
|
|
|
local_24 = 0; |
|
do { |
|
local_28 = local_24; |
|
if (param_3 <= local_24) { |
|
return 0; |
|
} |
|
while (local_28 = local_28 + 1, local_28 < param_3) { |
|
if ((double)((ulong)(double)(*(float *)(param_2 + (long)local_24 * 4) - |
|
*(float *)(param_2 + (long)local_28 * 4)) & |
|
SUB168(_DAT_00402010,0)) < (double)param_1) { |
|
return 1; |
|
} |
|
} |
|
local_24 = local_24 + 1; |
|
} while( true ); |
|
} |
|
``` |
|
4. Refine pseudo-code using LLM4Decompile (demo.py) |
|
|
|
**Decompilation:** Use LLM4Decompile-Ref to refine the Ghidra pseudo-code into C: |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_path = 'LLM4Binary/llm4decompile-6.7b-v2' # V2 Model |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16).cuda() |
|
|
|
with open(fileName +'_' + OPT[0] +'.pseudo','r') as f:#optimization level O0 |
|
asm_func = f.read() |
|
inputs = tokenizer(asm_func, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, max_new_tokens=2048)### max length to 4096, max new tokens should be below the range |
|
c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1]) |
|
|
|
with open(fileName +'_' + OPT[0] +'.pseudo','r') as f:#original file |
|
func = f.read() |
|
|
|
print(f'pseudo function:\n{func}')# Note we only decompile one function, where the original file may contain multiple functions |
|
print(f'refined function:\n{c_func_decompile}') |
|
|
|
``` |
|
|
|
### 4. License |
|
This code repository is licensed under the MIT License. |
|
|
|
### 5. Contact |
|
|
|
If you have any questions, please raise an issue. |
|
|