Text Generation
Transformers
Safetensors
English
llama
nlp
llm
text-generation-inference
Inference Endpoints
AmberChat / README.md
mylibrar's picture
Update README.md
afb0ba5
|
raw
history blame
2.13 kB
---
license: apache-2.0
datasets:
- WizardLM/WizardLM_evol_instruct_V2_196k
- icybee/share_gpt_90k_v1
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- nlp
- llm
---
# AmberChat
We present AmberChat, an instruction following model finetuned from [LLM360/Amber](https://huggingface.co/LLM360/Amber).
## Model Description
- **Model type:** Language model with the same architecture as LLaMA-7B
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Resources for more information:**
- [Research paper](https://arxiv.org/)
- [GitHub Repo](https://github.com/LLM360)
- [Amber pretraining data](https://huggingface.co/)
# Loading AmberChat
```python
from transformers import LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained("LLM360/AmberChat")
model = LlamaForCausalLM.from_pretrained("LLM360/AmberChat")
input_text = "translate English to German: How old are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
# AmberChat Finetuning Details
## DataMix
| Subset | Number of rows |
| ----------- | ----------- |
| WizardLM/WizardLM_evol_instruct_V2_196k | 143k |
| icybee/share_gpt_90k_v1 | 90k |
| Total | 233k |
## Hyperparameters
| Hyperparameter | Value |
| ----------- | ----------- |
| Total Parameters | 6.7B |
| Hidden Size | 4096 |
| Intermediate Size (MLPs) | 11008 |
| Number of Attention Heads | 32 |
| Number of Hidden Lyaers | 32 |
| RMSNorm ɛ | 1e^-6 |
| Max Seq Length | 2048 |
| Vocab Size | 32000 |
# Evaluation
| Model | MT-Bench |
|------------------------------------------------------|------------------------------------------------------------|
| LLM360/Amber 359 | 2.48750 |
| **LLM360/AmberChat** | **5.428125** |
# Citation
**BibTeX:**
```bibtex
@article{xxx,
title={XXX},
author={XXX},
journal={XXX},
year={2023}
}
```