metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- ag_news
metrics:
- f1
model-index:
- name: ag-news-twitter-9600-bert-base-uncased
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- name: F1
type: f1
value: 0.9162249767982196
ag-news-twitter-9600-bert-base-uncased
This model is a fine-tuned version of bert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:
- F1: 0.9162
- Acc: 0.9162
- Loss: 0.6033
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | F1 | Acc | Validation Loss |
---|---|---|---|---|---|
0.8065 | 1.0 | 600 | 0.9060 | 0.9059 | 0.3013 |
0.2872 | 2.0 | 1200 | 0.9171 | 0.9170 | 0.2598 |
0.2156 | 3.0 | 1800 | 0.9178 | 0.9184 | 0.3117 |
0.1486 | 4.0 | 2400 | 0.9200 | 0.9197 | 0.3631 |
0.0683 | 5.0 | 3000 | 0.9202 | 0.9201 | 0.3782 |
0.045 | 6.0 | 3600 | 0.9186 | 0.9188 | 0.4846 |
0.0218 | 7.0 | 4200 | 0.9155 | 0.9155 | 0.5898 |
0.0245 | 8.0 | 4800 | 0.9162 | 0.9162 | 0.6033 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1