xlm-roberta-base-rus-finetuned
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1612
- F1: 0.8438
- Roc Auc: 0.8957
- Accuracy: 0.7839
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.4558 | 1.0 | 131 | 0.4195 | 0.0 | 0.5 | 0.1608 |
0.268 | 2.0 | 262 | 0.2245 | 0.6816 | 0.7919 | 0.6734 |
0.198 | 3.0 | 393 | 0.2071 | 0.7838 | 0.8577 | 0.6985 |
0.141 | 4.0 | 524 | 0.1801 | 0.8030 | 0.8733 | 0.7487 |
0.1185 | 5.0 | 655 | 0.1612 | 0.8438 | 0.8957 | 0.7839 |
0.1002 | 6.0 | 786 | 0.1520 | 0.8418 | 0.8999 | 0.7990 |
0.0967 | 7.0 | 917 | 0.1678 | 0.8278 | 0.8956 | 0.7688 |
0.0673 | 8.0 | 1048 | 0.1673 | 0.8402 | 0.9043 | 0.7487 |
0.0535 | 9.0 | 1179 | 0.1721 | 0.8339 | 0.9025 | 0.7638 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.