xlm-roberta-base-ron-finetuned

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4393
  • F1: 0.7035
  • Roc Auc: 0.7953
  • Accuracy: 0.3821

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.6354 1.0 61 0.6015 0.0208 0.5056 0.1463
0.4919 2.0 122 0.4256 0.4526 0.6896 0.3008
0.4178 3.0 183 0.3842 0.5266 0.7193 0.3577
0.3592 4.0 244 0.3720 0.6510 0.7751 0.4065
0.3122 5.0 305 0.3901 0.6165 0.7589 0.4390
0.2941 6.0 366 0.3834 0.6817 0.7886 0.3984
0.2558 7.0 427 0.3634 0.6841 0.7945 0.4553
0.2337 8.0 488 0.4079 0.6820 0.7824 0.3902
0.2208 9.0 549 0.4187 0.6656 0.7800 0.3740
0.198 10.0 610 0.4166 0.6858 0.7838 0.3902
0.1813 11.0 671 0.4107 0.6886 0.7895 0.3984
0.1689 12.0 732 0.4313 0.6907 0.7912 0.4065
0.1431 13.0 793 0.4393 0.7035 0.7953 0.3821
0.131 14.0 854 0.4399 0.6805 0.7787 0.3740
0.1227 15.0 915 0.4599 0.6952 0.7923 0.3984
0.1009 16.0 976 0.4618 0.6712 0.7723 0.3659
0.1025 17.0 1037 0.4569 0.6844 0.7842 0.3902

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Kuongan/xlm-roberta-base-ron-finetuned

Finetuned
(2741)
this model
Finetunes
1 model