Kukedlc's picture
Upload folder using huggingface_hub
95ef8a2 verified
---
base_model:
- gemma-2-2b-it/2
- Kukedlc/NeuralGemma2-2b-Spanish
- Kukedlc/fusion_model_2
tags:
- merge
- mergekit
- lazymergekit
- gemma-2-2b-it/2
- Kukedlc/NeuralGemma2-2b-Spanish
- Kukedlc/fusion_model_2
---
# NeuralGemma-2B-Spanish
NeuralGemma-2B-Spanish is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [gemma-2-2b-it/2](https://huggingface.co/gemma-2-2b-it/2)
* [Kukedlc/NeuralGemma2-2b-Spanish](https://huggingface.co/Kukedlc/NeuralGemma2-2b-Spanish)
* [Kukedlc/fusion_model_2](https://huggingface.co/Kukedlc/fusion_model_2)
## 🧩 Configuration
```yaml
models:
- model: gemma-2-2b/2
# No parameters necessary for base model
- model: gemma-2-2b-it/2
parameters:
density: 0.53
weight: 0.4
- model: Kukedlc/NeuralGemma2-2b-Spanish
parameters:
density: 0.44
weight: 0.2
- model: Kukedlc/fusion_model_2
parameters:
density: 0.66
weight: 0.4
merge_method: dare_ties
base_model: gemma-2-2b/2
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralGemma-2B-Spanish"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```