Model Card for Model ID

This model is for the Assurant Challenge 1.

Model Details

This is a BLIP Model that has been fine-tuned for 30 epochs using a custom data scrapped for web. It has been finetuned using a dataset which is a collection of (text description of a scene, collection of images of that scene). The underlying application is to assist the insurance officer in verifying and approving the house rental damage claims raised by the user, and make predictions of future problems that might appear and general advice on maintaining the house.

Model Description

The architecture is exactly the same as BLIP.

  • Developed by: Krishna Sri Ipsit Mantri, Varnica Chabria, Pavan Chaitanya Penagamuri, Kalyan Salkar
  • Funded by [optional]: Used Intel Developer Cloud Credits provided for Hacklytics2024
  • Shared by [optional]:
  • Model type: Fine-tuned image-to-text model
  • Language(s) (NLP): English
  • License: Apache 2.0
  • Finetuned from model [optional]: BLIP

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

Should not be used for anything other than the challenge.

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: Intel
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.