lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8012
  • Answer: {'precision': 0.8827751196172249, 'recall': 0.9033047735618115, 'f1': 0.8929219600725952, 'number': 817}
  • Header: {'precision': 0.6868686868686869, 'recall': 0.5714285714285714, 'f1': 0.6238532110091742, 'number': 119}
  • Question: {'precision': 0.9034296028880866, 'recall': 0.9294336118848654, 'f1': 0.9162471395881007, 'number': 1077}
  • Overall Precision: 0.8845
  • Overall Recall: 0.8977
  • Overall F1: 0.8910
  • Overall Accuracy: 0.8001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4051 10.53 200 1.1192 {'precision': 0.8408577878103838, 'recall': 0.9118727050183598, 'f1': 0.8749266001174398, 'number': 817} {'precision': 0.44776119402985076, 'recall': 0.5042016806722689, 'f1': 0.4743083003952569, 'number': 119} {'precision': 0.8896289248334919, 'recall': 0.8681522748375116, 'f1': 0.8787593984962405, 'number': 1077} 0.8402 0.8644 0.8521 0.7879
0.0479 21.05 400 1.3335 {'precision': 0.8625146886016452, 'recall': 0.8984088127294981, 'f1': 0.880095923261391, 'number': 817} {'precision': 0.539568345323741, 'recall': 0.6302521008403361, 'f1': 0.5813953488372092, 'number': 119} {'precision': 0.8969359331476323, 'recall': 0.8969359331476323, 'f1': 0.8969359331476322, 'number': 1077} 0.8587 0.8818 0.8701 0.7952
0.0135 31.58 600 1.5420 {'precision': 0.8301675977653631, 'recall': 0.9094247246022031, 'f1': 0.8679906542056074, 'number': 817} {'precision': 0.6082474226804123, 'recall': 0.4957983193277311, 'f1': 0.5462962962962963, 'number': 119} {'precision': 0.8853333333333333, 'recall': 0.924791086350975, 'f1': 0.9046321525885559, 'number': 1077} 0.8493 0.8932 0.8707 0.7890
0.0068 42.11 800 1.6315 {'precision': 0.8870967741935484, 'recall': 0.8751529987760098, 'f1': 0.8810844115834873, 'number': 817} {'precision': 0.6521739130434783, 'recall': 0.6302521008403361, 'f1': 0.641025641025641, 'number': 119} {'precision': 0.9054307116104869, 'recall': 0.8978644382544104, 'f1': 0.9016317016317017, 'number': 1077} 0.8834 0.8728 0.8781 0.8044
0.0047 52.63 1000 1.6176 {'precision': 0.8813559322033898, 'recall': 0.8910648714810282, 'f1': 0.8861838101034694, 'number': 817} {'precision': 0.6764705882352942, 'recall': 0.5798319327731093, 'f1': 0.6244343891402716, 'number': 119} {'precision': 0.8922528940338379, 'recall': 0.9303621169916435, 'f1': 0.9109090909090909, 'number': 1077} 0.8771 0.8937 0.8853 0.7979
0.002 63.16 1200 1.9150 {'precision': 0.8640552995391705, 'recall': 0.9179926560587516, 'f1': 0.8902077151335311, 'number': 817} {'precision': 0.6330275229357798, 'recall': 0.5798319327731093, 'f1': 0.6052631578947367, 'number': 119} {'precision': 0.9049815498154982, 'recall': 0.9108635097493036, 'f1': 0.907913003239241, 'number': 1077} 0.8734 0.8942 0.8837 0.7874
0.0015 73.68 1400 1.7303 {'precision': 0.8863361547762999, 'recall': 0.8971848225214198, 'f1': 0.8917274939172749, 'number': 817} {'precision': 0.7319587628865979, 'recall': 0.5966386554621849, 'f1': 0.6574074074074073, 'number': 119} {'precision': 0.8903985507246377, 'recall': 0.9127205199628597, 'f1': 0.901421366345713, 'number': 1077} 0.8812 0.8877 0.8844 0.8015
0.0011 84.21 1600 1.7743 {'precision': 0.8763376932223543, 'recall': 0.9020807833537332, 'f1': 0.8890229191797346, 'number': 817} {'precision': 0.6147540983606558, 'recall': 0.6302521008403361, 'f1': 0.6224066390041495, 'number': 119} {'precision': 0.9009259259259259, 'recall': 0.903435468895079, 'f1': 0.9021789522484933, 'number': 1077} 0.8737 0.8867 0.8802 0.7948
0.001 94.74 1800 1.8012 {'precision': 0.8827751196172249, 'recall': 0.9033047735618115, 'f1': 0.8929219600725952, 'number': 817} {'precision': 0.6868686868686869, 'recall': 0.5714285714285714, 'f1': 0.6238532110091742, 'number': 119} {'precision': 0.9034296028880866, 'recall': 0.9294336118848654, 'f1': 0.9162471395881007, 'number': 1077} 0.8845 0.8977 0.8910 0.8001
0.0005 105.26 2000 1.7293 {'precision': 0.8468571428571429, 'recall': 0.9069767441860465, 'f1': 0.875886524822695, 'number': 817} {'precision': 0.696078431372549, 'recall': 0.5966386554621849, 'f1': 0.6425339366515838, 'number': 119} {'precision': 0.9037580201649863, 'recall': 0.9155060352831941, 'f1': 0.9095940959409595, 'number': 1077} 0.8694 0.8932 0.8812 0.8066
0.0003 115.79 2200 1.7737 {'precision': 0.8584579976985041, 'recall': 0.9130966952264382, 'f1': 0.8849347568208777, 'number': 817} {'precision': 0.6979166666666666, 'recall': 0.5630252100840336, 'f1': 0.6232558139534883, 'number': 119} {'precision': 0.8930817610062893, 'recall': 0.9229340761374187, 'f1': 0.9077625570776255, 'number': 1077} 0.8696 0.8977 0.8834 0.8076
0.0002 126.32 2400 1.7984 {'precision': 0.8419864559819413, 'recall': 0.9130966952264382, 'f1': 0.8761009982384028, 'number': 817} {'precision': 0.7040816326530612, 'recall': 0.5798319327731093, 'f1': 0.6359447004608296, 'number': 119} {'precision': 0.9012797074954296, 'recall': 0.9155060352831941, 'f1': 0.9083371718102257, 'number': 1077} 0.8667 0.8947 0.8805 0.8078

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
10
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KrisKrit/lilt-en-funsd

Finetuned
(46)
this model