FastApply-1.5B-v1.0 / README.md
dat-lequoc's picture
Update README.md
4ad19fe verified
---
base_model: unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
- fast-apply
- instant-apply
---
# FastApply-1.5B-v1.0
[Github: kortix-ai/fast-apply](https://github.com/kortix-ai/fast-apply)
[Dataset: Kortix/FastApply-dataset-v1.0](https://huggingface.co/datasets/Kortix/FastApply-dataset-v1.0)
[Try it now on ๐Ÿ‘‰ Google Colab](https://colab.research.google.com/drive/1BNCab4oK-xBqwFQD4kCcjKc7BPKivkm1?usp=sharing)
## Model Details
### Basic Information
- **Developed by:** Kortix
- **License:** apache-2.0
- **Finetuned from model:** [unsloth/Qwen2.5-Coder-1.5B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Qwen2.5-Coder-1.5B-Instruct-bnb-4bit)
### Model Description
FastApply-1.5B-v1.0 is a 1.5B model designed for instant code application, producing full file edits to power [SoftGen AI](https://softgen.ai/).
It is part of the Fast Apply pipeline for data generation and fine-tuning Qwen2.5 Coder models.
The model achieves high throughput when deployed on fast providers like Fireworks while maintaining high edit accuracy, with a speed of approximately 340 tokens/second.
## Intended Use
FastApply-1.5B-v1.0 is intended for use in AI-powered code editors and tools that require fast, accurate code modifications. It is particularly well-suited for:
- Instant code application tasks
- Full file edits
- Integration with AI-powered code editors like Aider and PearAI
- Local tools to reduce the cost of frontier model output
## Inference template
FastApply-1.5B-v1.0 is based on the Qwen2.5 Coder architecture and is fine-tuned for code editing tasks. It uses a specific prompt structure for inference:
```
<|im_start|>system
You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|>
<|im_start|>user
Merge all changes from the <update> snippet into the <code> below.
- Preserve the code's structure, order, comments, and indentation exactly.
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.
<code>{original_code}</code>
<update>{update_snippet}</update>
Provide the complete updated code.<|im_end|>
<|im_start|>assistant
```
The model's output is structured as:
```
<updated-code>[Full-complete updated file]</updated-code>
```
## Additional Information
For more details on the Fast Apply pipeline, data generation process, and deployment instructions, please refer to the [GitHub repository](https://github.com/kortix-ai/fast-apply).
## How to Use
To use the model, you can load it using the Hugging Face Transformers library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Kortix/FastApply-1.5B-v1.0", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("Kortix/FastApply-1.5B-v1.0")
# Prepare your input following the prompt structure mentioned above
input_text = """<|im_start|>system
You are a coding assistant that helps merge code updates, ensuring every modification is fully integrated.<|im_end|>
<|im_start|>user
Merge all changes from the <update> snippet into the <code> below.
- Preserve the code's structure, order, comments, and indentation exactly.
- Output only the updated code, enclosed within <updated-code> and </updated-code> tags.
- Do not include any additional text, explanations, placeholders, ellipses, or code fences.
<code>{original_code}</code>
<update>{update_snippet}</update>
Provide the complete updated code.<|im_end|>
<|im_start|>assistant
"""
input_text = input_text.format(
original_code=original_code,
update_snippet=update_snippet,
).strip()
# Generate the response
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=8192,)
response = tokenizer.decode(output[0][len(input_ids[0]):])
print(response)
# Extract the updated code from the response
updated_code = response.split("<updated-code>")[1].split("</updated-code>")[0]
```
## Evaluation:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/650d7ecb23e8028a8970a203/_E6WVzuVABKB58QMx6c1c.png)