|
--- |
|
language: |
|
- "ja" |
|
tags: |
|
- "japanese" |
|
- "token-classification" |
|
- "pos" |
|
- "dependency-parsing" |
|
base_model: KoichiYasuoka/roberta-base-japanese-aozora |
|
datasets: |
|
- "universal_dependencies" |
|
license: "cc-by-sa-4.0" |
|
pipeline_tag: "token-classification" |
|
widget: |
|
- text: "国境の長いトンネルを抜けると雪国であった。" |
|
--- |
|
|
|
# roberta-base-japanese-luw-upos |
|
|
|
## Model Description |
|
|
|
This is a RoBERTa model pre-trained on 青空文庫 texts for POS-tagging and dependency-parsing, derived from [roberta-base-japanese-aozora](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora). Every long-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). |
|
|
|
## How to Use |
|
|
|
```py |
|
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline |
|
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-luw-upos") |
|
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-base-japanese-luw-upos") |
|
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple") |
|
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)] |
|
print(nlp("国境の長いトンネルを抜けると雪国であった。")) |
|
``` |
|
|
|
or |
|
|
|
|
|
```py |
|
import esupar |
|
nlp=esupar.load("KoichiYasuoka/roberta-base-japanese-luw-upos") |
|
print(nlp("国境の長いトンネルを抜けると雪国であった。")) |
|
``` |
|
|
|
## Reference |
|
|
|
安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8. |
|
|
|
## See Also |
|
|
|
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models |
|
|
|
|