KoichiYasuoka's picture
initial release
3026b6a
|
raw
history blame
1.49 kB
---
language:
- "ko"
tags:
- "korean"
- "token-classification"
- "pos"
- "dependency-parsing"
datasets:
- "universal_dependencies"
license: "apache-2.0"
pipeline_tag: "token-classification"
widget:
- text: "홍시 맛이 나서 홍시라 생각한다."
- text: "紅柹 맛이 나서 紅柹라 生覺한다."
---
# deberta-base-korean-upos
## Model Description
This is a RoBERTa model pre-trained on Korean texts for POS-tagging and dependency-parsing, derived from [deberta-v3-base-korean](https://huggingface.co/team-lucid/deberta-v3-base-korean). Every word (어절) is tagged by [UPOS](https://universaldependencies.org/u/pos/)(Universal Part-Of-Speech).
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-korean-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/deberta-base-korean-upos")
pipeline=TokenClassificationPipeline(tokenizer=tokenizer,model=model,aggregation_strategy="simple")
nlp=lambda x:[(x[t["start"]:t["end"]],t["entity_group"]) for t in pipeline(x)]
print(nlp("홍시 맛이 나서 홍시라 생각한다."))
```
or
```py
import esupar
nlp=esupar.load("KoichiYasuoka/deberta-base-korean-upos")
print(nlp("홍시 맛이 나서 홍시라 생각한다."))
```
## See Also
[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models