bert-large-japanese-upos

Model Description

This is a BERT model pre-trained on Japanese Wikipedia texts for POS-tagging and dependency-parsing, derived from bert-large-japanese-char-extended. Every short-unit-word is tagged by UPOS (Universal Part-Of-Speech).

How to Use

import torch
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-japanese-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-japanese-upos")
s="国境の長いトンネルを抜けると雪国であった。"
p=[model.config.id2label[q] for q in torch.argmax(model(tokenizer.encode(s,return_tensors="pt"))["logits"],dim=2)[0].tolist()[1:-1]]
print(list(zip(s,p)))

or

import esupar
nlp=esupar.load("KoichiYasuoka/bert-large-japanese-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))

See Also

esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models

Downloads last month
358
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KoichiYasuoka/bert-large-japanese-upos

Dataset used to train KoichiYasuoka/bert-large-japanese-upos