|
--- |
|
base_model: BAAI/bge-m3 |
|
license: mit |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- llama-cpp |
|
- gguf-my-repo |
|
--- |
|
|
|
# KimChen/bge-m3-GGUF |
|
This model was converted to GGUF format from [`BAAI/bge-m3`](https://huggingface.co/BAAI/bge-m3) using [llama.cpp](https://github.com/ggerganov/llama.cpp). |
|
Refer to the [original model card](https://huggingface.co/BAAI/bge-m3) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo KimChen/bge-m3-GGUF --hf-file bge-m3.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo KimChen/bge-m3-GGUF --hf-file bge-m3.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp.git |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo KimChen/bge-m3-GGUF --hf-file bge-m3.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo KimChen/bge-m3-GGUF --hf-file bge-m3.gguf -c 2048 |
|
``` |
|
|