nllb-200-distilled-1.3B-finetuned-finetuned
This model is a fine-tuned version of KevinKibe/nllb-200-distilled-1.3B-finetuned on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7134
- Rouge: 0.467
- Gen Len: 49.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge | Gen Len |
---|---|---|---|---|---|
6.4789 | 100.0 | 100 | 5.8836 | 0.082 | 32.5 |
4.8961 | 200.0 | 200 | 4.8026 | 0.1552 | 29.0 |
3.636 | 300.0 | 300 | 3.5860 | 0.0292 | 63.0 |
2.4528 | 400.0 | 400 | 2.4531 | 0.2018 | 28.0 |
1.4112 | 500.0 | 500 | 1.6682 | 0.1899 | 70.0 |
0.6738 | 600.0 | 600 | 1.1858 | 0.1907 | 68.0 |
0.2921 | 700.0 | 700 | 0.8546 | 0.2776 | 28.0 |
0.1361 | 800.0 | 800 | 0.7109 | 0.3649 | 59.5 |
0.0764 | 900.0 | 900 | 0.7293 | 0.4568 | 54.0 |
0.0559 | 1000.0 | 1000 | 0.7134 | 0.467 | 49.0 |
Framework versions
- Transformers 4.39.2
- Pytorch 2.2.2+cu121
- Datasets 2.21.0
- Tokenizers 0.15.2
- Downloads last month
- 11