Kendamarron/LongWriter-llm-jp-3-3.7b-instruct

llm-jp/llm-jp-3-3.7b-instructを長文出力ができるようにSFTしたモデルです。

Dataset

Detail

https://zenn.dev/kendama/articles/32aa9ec4bed409

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 8
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
0.7184 1.2626 500 0.7673

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3

LLaMA-Factory yaml

### model
model_name_or_path: llm-jp/llm-jp-3-3.7b-instruct

### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json
enable_liger_kernel: true

### dataset
dataset: longwriter
template: alpaca_ja
cutoff_len: 32768
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: saves/llm_jp/full/sft
logging_steps: 1
save_steps: 500
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 1
learning_rate: 1.0e-5
optim: adamw_bnb_8bit
num_train_epochs: 2.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

### logging
report_to: wandb
Downloads last month
34
Safetensors
Model size
3.78B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kendamarron/LongWriter-llm-jp-3-3.7b-instruct

Finetuned
(3)
this model
Quantizations
1 model