KazukiNakamae
commited on
Commit
·
11c6e7b
1
Parent(s):
845471f
Uploaded model and tokenizer files
Browse files- README.md +92 -2
- config.json +33 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +11 -0
README.md
CHANGED
@@ -1,5 +1,95 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
base_model:
|
4 |
-
- zhihan1996/DNABERT-2-117M
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
base_model:
|
4 |
+
- zhihan1996/DNABERT-2-117M
|
5 |
+
tags:
|
6 |
+
- biology
|
7 |
+
- medical
|
8 |
+
---
|
9 |
+
This is one of the fine-tuned models, named STL model, from [zhihan1996/DNABERT-2-117M
|
10 |
+
](https://huggingface.co/zhihan1996/DNABERT-2-117M).
|
11 |
+
|
12 |
+
The STL model can predict the RNA offtarget induced by cytosine base editors (CBEs).
|
13 |
+
|
14 |
+
Here is an example of using the model for RNA-off-target prediction.
|
15 |
+
|
16 |
+
**pred_rna_offtarget.py:**
|
17 |
+
|
18 |
+
```python
|
19 |
+
import sys
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
23 |
+
|
24 |
+
__authors__ = ["Kazuki Nakamae"]
|
25 |
+
__version__ = "1.0.0"
|
26 |
+
|
27 |
+
def pred_rna_offtarget(dna, model_dir):
|
28 |
+
try:
|
29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # モデル仕様に利用するデバイスの設定:CUDAが使えなければCPUを使うように設定
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) # 訓練済みモデルが理解できるフォーマットを指定
|
31 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_dir, trust_remote_code=True).to(device) # 分類処理用に訓練済みモデルを読み込み
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error loading model from {model_dir}: {e}")
|
34 |
+
sys.exit(1)
|
35 |
+
|
36 |
+
inputs = tokenizer(dna, return_tensors='pt') # 入力テキストを訓練済みモデルが理解できるフォーマット(トークン)に分割し、各トークンを「トークンID」に変換
|
37 |
+
model.eval() # モデルの状態を推論モード(訓練モードでない)に指定
|
38 |
+
with torch.no_grad():# テンソルの勾配計算OFF:省メモリ化
|
39 |
+
# モデルのインプットとして渡して評価
|
40 |
+
outputs = model(
|
41 |
+
inputs["input_ids"].to(device),
|
42 |
+
inputs["attention_mask"].to(device),
|
43 |
+
)
|
44 |
+
# print(outputs.logits)
|
45 |
+
# 例:tensor([[-1.6488, 1.4636]])という形で出力
|
46 |
+
# [Negativeの評価値, Positiveの評価値]というような形式となっている。
|
47 |
+
y_preds = np.argmax(outputs.logits.to('cpu').detach().numpy().copy(), axis=1) # 評価値が高い方のインデックス取り出し+numpy化
|
48 |
+
|
49 |
+
# モデルからラベル判定を読み出す
|
50 |
+
def id2label(x):
|
51 |
+
return model.config.id2label[x]
|
52 |
+
y_dash = [id2label(x) for x in y_preds] # 評価値が高い方のラベル判定を取り出す
|
53 |
+
print(y_dash)
|
54 |
+
# 例:['LABEL_1']という形で出力
|
55 |
+
# LABEL_0: Negative / LABEL_1: Positive という意味
|
56 |
+
return (dna, y_dash)
|
57 |
+
|
58 |
+
def print_usage():
|
59 |
+
print(f"Usage: {sys.argv[0]} <input DNA sequence> <DNABERT-2 model directory>")
|
60 |
+
print("Options:")
|
61 |
+
print(" -h, --help Show this help message and exit")
|
62 |
+
print(" -v, --version Show version information and exit")
|
63 |
+
|
64 |
+
def print_version():
|
65 |
+
print(f"{sys.argv[0]} version {__version__}")
|
66 |
+
print("Authors:", ", ".join(__authors__))
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
if len(sys.argv) != 3:
|
70 |
+
if len(sys.argv) == 2 and sys.argv[1] in ("-h", "--help"):
|
71 |
+
print_usage()
|
72 |
+
sys.exit(0)
|
73 |
+
elif len(sys.argv) == 2 and sys.argv[1] in ("-v", "--version"):
|
74 |
+
print_version()
|
75 |
+
sys.exit(0)
|
76 |
+
else:
|
77 |
+
print_usage()
|
78 |
+
sys.exit(1)
|
79 |
+
|
80 |
+
dna = sys.argv[1]
|
81 |
+
model_dir = sys.argv[2]
|
82 |
+
|
83 |
+
pred_rna_offtarget(dna, model_dir)
|
84 |
+
|
85 |
+
```
|
86 |
+
|
87 |
+
```bash
|
88 |
+
$ python pred_rna_offtarget.py GGCAGGGCTGGGGAAGCTTACTGTGTCCAAGAGCCTGCTG KazukiNakamae/STLmodel;
|
89 |
+
['LABEL_1']
|
90 |
+
$ python pred_rna_offtarget.py GTCATCTAACAAAAATATTCCGTTGCAGGAAAAGCAAGCT KazukiNakamae/STLmodel;
|
91 |
+
['LABEL_0']
|
92 |
+
```
|
93 |
+
|
94 |
+
#### Developers of the fine-tuned model
|
95 |
+
- [Takayuki Suzuki](https://github.com/szktkyk)
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "tmp/DNABERT-2-CBE_Suzuki_v1/",
|
3 |
+
"alibi_starting_size": 512,
|
4 |
+
"architectures": [
|
5 |
+
"BertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "zhihan1996/DNABERT-2-117M--configuration_bert.BertConfig",
|
10 |
+
"AutoModel": "zhihan1996/DNABERT-2-117M--bert_layers.BertModel",
|
11 |
+
"AutoModelForMaskedLM": "zhihan1996/DNABERT-2-117M--bert_layers.BertForMaskedLM",
|
12 |
+
"AutoModelForSequenceClassification": "zhihan1996/DNABERT-2-117M--bert_layers.BertForSequenceClassification"
|
13 |
+
},
|
14 |
+
"classifier_dropout": null,
|
15 |
+
"gradient_checkpointing": false,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_dropout_prob": 0.1,
|
18 |
+
"hidden_size": 768,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 3072,
|
21 |
+
"layer_norm_eps": 1e-12,
|
22 |
+
"max_position_embeddings": 512,
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"problem_type": "single_label_classification",
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.29.2",
|
30 |
+
"type_vocab_size": 2,
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 4096
|
33 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61fd38248ed199c7b809140a8ae0c96267228f6adea1bd73d6145e14dfdafe08
|
3 |
+
size 468326010
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"mask_token": "[MASK]",
|
5 |
+
"model_max_length": 10,
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"padding_side": "right",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
10 |
+
"unk_token": "[UNK]"
|
11 |
+
}
|