This is one of the fine-tuned models, named STL model, from zhihan1996/DNABERT-2-117M .
The STL model can predict the RNA offtarget induced by cytosine base editors (CBEs).
Here is an example of using the model for RNA-off-target prediction.
pred_rna_offtarget.py:
import sys
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
__authors__ = ["Kazuki Nakamae"]
__version__ = "1.0.0"
def pred_rna_offtarget(dna, model_dir):
try:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
model = AutoModelForSequenceClassification.from_pretrained(model_dir, trust_remote_code=True).to(device)
except Exception as e:
print(f"Error loading model from {model_dir}: {e}")
sys.exit(1)
inputs = tokenizer(dna, return_tensors='pt')
model.eval()
with torch.no_grad():
outputs = model(
inputs["input_ids"].to(device),
inputs["attention_mask"].to(device),
)
print("[Negative, Positive]")
print(outputs.logits)
y_preds = np.argmax(outputs.logits.to('cpu').detach().numpy().copy(), axis=1)
def id2label(x):
return model.config.id2label[x]
y_dash = [id2label(x) for x in y_preds]
print("Result:")
print(y_dash)
# LABEL_0: Not RNA-offtarget / LABEL_1: RNA-offtarget
return (dna, y_dash)
def print_usage():
print(f"Usage: {sys.argv[0]} <input DNA sequence> <DNABERT-2 model directory>")
print("Options:")
print(" -h, --help Show this help message and exit")
print(" -v, --version Show version information and exit")
def print_version():
print(f"{sys.argv[0]} version {__version__}")
print("Authors:", ", ".join(__authors__))
if __name__ == "__main__":
if len(sys.argv) != 3:
if len(sys.argv) == 2 and sys.argv[1] in ("-h", "--help"):
print_usage()
sys.exit(0)
elif len(sys.argv) == 2 and sys.argv[1] in ("-v", "--version"):
print_version()
sys.exit(0)
else:
print_usage()
sys.exit(1)
dna = sys.argv[1]
model_dir = sys.argv[2]
pred_rna_offtarget(dna, model_dir)
$ python pred_rna_offtarget.py GGCAGGGCTGGGGAAGCTTACTGTGTCCAAGAGCCTGCTG KazukiNakamae/STLmodel;
[Negative, Positive]
tensor([[-1.6383, 1.4502]])
Result:
['LABEL_1']
$ python pred_rna_offtarget.py GTCATCTAACAAAAATATTCCGTTGCAGGAAAAGCAAGCT KazukiNakamae/STLmodel;
[Negative, Positive]
tensor([[ 0.5446, -0.5105]])
Result:
['LABEL_0']
Developers of the fine-tuned model
- Downloads last month
- 7
Model tree for KazukiNakamae/STLmodel
Base model
zhihan1996/DNABERT-2-117M