clasificador-sms / README.md
Katowise's picture
Update README.md
ebb1f94
|
raw
history blame
1.6 kB
---
license: apache-2.0
tags:
- classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: clasificador-sms
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clasificador-sms
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0286
- Accuracy: 0.9964
## Model description
Se cree que arroja un acuraccy tan bueno porque las clases están desbalanceadas, como no era el objetivo de la asignatura no se indagado más sobre este problema
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0805 | 1.0 | 627 | 0.0328 | 0.9928 |
| 0.0343 | 2.0 | 1254 | 0.0180 | 0.9964 |
| 0.0132 | 3.0 | 1881 | 0.0286 | 0.9964 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3