Orpheus TTS Turkish Model
Orpheus TTS Turkish Pretrain (step 2000) model is trained based on "canopylabs/orpheus-3b-0.1-pretrained".
Syntethic voice data over 60 hrs used for initial training. +160hrs additional Syntethic voice data mixed in training. 400 Emoji (real voice) data used for emoji support.
you can interact with the model - Flask API
Emotion Support
Model supports below emotions in the text.
<laugh> – gülme
<chuckle> – kıkırdama
<sigh> – iç çekme
<cough> – öksürme
<sniffle> – <burnunu çekme>
<groan> – inleme
<yawn> – esneme
<gasp> – nefesi kesilme / şaşkınlıkla soluma
API
Flask configured to run on port 5400 (you can change in the below script)
POST http://127.0.0.1:5400/generate HTTP/1.1
User-Agent: Fiddler
content-type: application/json
Host: 127.0.0.1:5400
Content-Length: 110
{
"text": "Merhaba, orpheusTTS Turkce deneme"
}
Create Environment
windows:
#create virtual environment
python -m venv venv
venv\Scripts\activate
python inference.py
Training
For training with your own data, you can check
train.py
config.yaml
inference.py
(please install the necessary libraries)
# respective torch from https://pytorch.org/
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
pip install snac pathlib torch transformers huggingface_hub librosa numpy scipy torchaudio Flask jsonify
import os
from snac import SNAC
from pathlib import Path
import torch
from transformers import AutoModelForCausalLM, Trainer, TrainingArguments, AutoTokenizer,BitsAndBytesConfig
from huggingface_hub import snapshot_download
import librosa
import numpy as np
from scipy.io.wavfile import write
import torchaudio
from flask import Flask, jsonify, request
modelLocalPath="D:\\...\\Karayakar\\Orpheus-TTS-Turkish-PT-5000"
def load_orpheus_tokenizer(model_id: str = modelLocalPath) -> AutoTokenizer:
tokenizer = AutoTokenizer.from_pretrained(model_id,local_files_only=True, device_map="cuda")
return tokenizer
def load_snac():
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
return snac_model
def load_orpheus_auto_model(model_id: str = modelLocalPath):
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16,local_files_only=True, device_map="cuda")
model.cuda()
return model
def tokenize_audio(audio_file_path, snac_model):
audio_array, sample_rate = librosa.load(audio_file_path, sr=24000)
waveform = torch.from_numpy(audio_array).unsqueeze(0)
waveform = waveform.to(dtype=torch.float32)
waveform = waveform.unsqueeze(0)
with torch.inference_mode():
codes = snac_model.encode(waveform)
all_codes = []
for i in range(codes[0].shape[1]):
all_codes.append(codes[0][0][i].item() + 128266)
all_codes.append(codes[1][0][2 * i].item() + 128266 + 4096)
all_codes.append(codes[2][0][4 * i].item() + 128266 + (2 * 4096))
all_codes.append(codes[2][0][(4 * i) + 1].item() + 128266 + (3 * 4096))
all_codes.append(codes[1][0][(2 * i) + 1].item() + 128266 + (4 * 4096))
all_codes.append(codes[2][0][(4 * i) + 2].item() + 128266 + (5 * 4096))
all_codes.append(codes[2][0][(4 * i) + 3].item() + 128266 + (6 * 4096))
return all_codes
def prepare_inputs(
fpath_audio_ref,
audio_ref_transcript: str,
text_prompts: list[str],
snac_model,
tokenizer,
):
start_tokens = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260, 128261, 128257]], dtype=torch.int64)
final_tokens = torch.tensor([[128258, 128262]], dtype=torch.int64)
all_modified_input_ids = []
for prompt in text_prompts:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
#second_input_ids = torch.cat([zeroprompt_input_ids, start_tokens, input_ids, end_tokens], dim=1)
second_input_ids = torch.cat([start_tokens, input_ids, end_tokens], dim=1)
all_modified_input_ids.append(second_input_ids)
all_padded_tensors = []
all_attention_masks = []
max_length = max([modified_input_ids.shape[1] for modified_input_ids in all_modified_input_ids])
for modified_input_ids in all_modified_input_ids:
padding = max_length - modified_input_ids.shape[1]
padded_tensor = torch.cat([torch.full((1, padding), 128263, dtype=torch.int64), modified_input_ids], dim=1)
attention_mask = torch.cat([torch.zeros((1, padding), dtype=torch.int64),
torch.ones((1, modified_input_ids.shape[1]), dtype=torch.int64)], dim=1)
all_padded_tensors.append(padded_tensor)
all_attention_masks.append(attention_mask)
all_padded_tensors = torch.cat(all_padded_tensors, dim=0)
all_attention_masks = torch.cat(all_attention_masks, dim=0)
input_ids = all_padded_tensors.to("cuda")
attention_mask = all_attention_masks.to("cuda")
return input_ids, attention_mask
def inference(model, input_ids, attention_mask):
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=2048,
do_sample=True,
temperature=0.2,
top_k=10,
top_p=0.9,
repetition_penalty=1.9,
num_return_sequences=1,
eos_token_id=128258,
)
generated_ids = torch.cat([generated_ids, torch.tensor([[128262]]).to("cuda")], dim=1) # EOAI
return generated_ids
def convert_tokens_to_speech(generated_ids, snac_model):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx + 1:]
else:
cropped_tensor = generated_ids
_mask = cropped_tensor != token_to_remove
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
my_samples = []
for code_list in code_lists:
samples = redistribute_codes(code_list, snac_model)
my_samples.append(samples)
return my_samples
def redistribute_codes(code_list, snac_model):
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list) + 1) // 7):
layer_1.append(code_list[7 * i])
layer_2.append(code_list[7 * i + 1] - 4096)
layer_3.append(code_list[7 * i + 2] - (2 * 4096))
layer_3.append(code_list[7 * i + 3] - (3 * 4096))
layer_2.append(code_list[7 * i + 4] - (4 * 4096))
layer_3.append(code_list[7 * i + 5] - (5 * 4096))
layer_3.append(code_list[7 * i + 6] - (6 * 4096))
codes = [
torch.tensor(layer_1).unsqueeze(0),
torch.tensor(layer_2).unsqueeze(0),
torch.tensor(layer_3).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat
def to_wav_from(samples: list) -> list[np.ndarray]:
"""Converts a list of PyTorch tensors (or NumPy arrays) to NumPy arrays."""
processed_samples = []
for s in samples:
if isinstance(s, torch.Tensor):
s = s.detach().squeeze().to('cpu').numpy()
else:
s = np.squeeze(s)
processed_samples.append(s)
return processed_samples
def zero_shot_tts(fpath_audio_ref, audio_ref_transcript, texts: list[str], model, snac_model, tokenizer):
print(f"fpath_audio_ref {fpath_audio_ref}")
print(f"audio_ref_transcript {audio_ref_transcript}")
print(f"texts {texts}")
inp_ids, attn_mask = prepare_inputs(fpath_audio_ref, audio_ref_transcript, texts, snac_model, tokenizer)
print(f"input_id_len:{len(inp_ids)}")
gen_ids = inference(model, inp_ids, attn_mask)
samples = convert_tokens_to_speech(gen_ids, snac_model)
wav_forms = to_wav_from(samples)
return wav_forms
def save_wav(samples: list[np.array], sample_rate: int, filenames: list[str]):
""" Saves a list of tensors as .wav files.
Args:
samples (list[torch.Tensor]): List of audio tensors.
sample_rate (int): Sample rate in Hz.
filenames (list[str]): List of filenames to save.
"""
wav_data = to_wav_from(samples)
for data, filename in zip(wav_data, filenames):
write(filename, sample_rate, data.astype(np.float32))
print(f"saved to {filename}")
def get_ref_audio_and_transcript(root_folder: str):
root_path = Path(root_folder)
print(f"root_path {root_path}")
out = []
for speaker_folder in root_path.iterdir():
if speaker_folder.is_dir(): # Ensure it's a directory
wav_files = list(speaker_folder.glob("*.wav"))
txt_files = list(speaker_folder.glob("*.txt"))
if wav_files and txt_files:
ref_audio = wav_files[0] # Assume only one .wav file per folder
transcript = txt_files[0].read_text(encoding="utf-8").strip()
out.append((ref_audio, transcript))
return out
app = Flask(__name__)
@app.route('/generate', methods=['POST'])
def generate():
content = request.json
process_data(content)
rresponse = {
'received': content,
'status': 'success'
}
response= jsonify(rresponse)
response.headers['Content-Type'] = 'application/json; charset=utf-8'
return response
def process_data(jsonText):
texts = [f"{jsonText['text']}"]
#print(f"texts:{texts}")
#print(f"prompt_pairs:{prompt_pairs}")
for fpath_audio, audio_transcript in prompt_pairs:
print(f"zero shot: {fpath_audio} {audio_transcript}")
wav_forms = zero_shot_tts(fpath_audio, audio_transcript, texts, model, snac_model, tokenizer)
import os
from pathlib import Path
from datetime import datetime
out_dir = Path(fpath_audio).parent / "inference"
#print(f"out_dir:{out_dir}")
out_dir.mkdir(parents=True, exist_ok=True) #
timestamp_str = str(int(datetime.now().timestamp()))
file_names = [f"{out_dir.as_posix()}/{Path(fpath_audio).stem}_{i}_{timestamp_str}.wav" for i, t in enumerate(texts)]
#print(f"file_names:{file_names}")
save_wav(wav_forms, 24000, file_names)
if __name__ == "__main__":
tokenizer = load_orpheus_tokenizer()
model = load_orpheus_auto_model()
snac_model = load_snac()
prompt_pairs = get_ref_audio_and_transcript("D:\\AI_APPS\\Orpheus-TTS\\data")
print(f"snac_model loaded")
app.run(debug=True,port=5400)
- Downloads last month
- 28
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no library tag.