summarisation_model
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3693
- Rouge1: 0.3115
- Rouge2: 0.1433
- Rougel: 0.2744
- Rougelsum: 0.2741
- Gen Len: 19.957
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 105 | 2.4604 | 0.2865 | 0.125 | 0.2496 | 0.2493 | 19.9403 |
No log | 2.0 | 210 | 2.3996 | 0.3023 | 0.1376 | 0.2654 | 0.2655 | 19.9379 |
No log | 3.0 | 315 | 2.3755 | 0.3086 | 0.1422 | 0.2713 | 0.2716 | 19.9332 |
No log | 4.0 | 420 | 2.3693 | 0.3115 | 0.1433 | 0.2744 | 0.2741 | 19.957 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Kankanaghosh/summarisation_model
Base model
google-t5/t5-small