|
--- |
|
license: gpl-3.0 |
|
datasets: |
|
- detection-datasets/coco |
|
--- |
|
|
|
# Introduction |
|
|
|
This repository stores the model for YOLOv9-M, compatible with Kalray's neural network API. </br> |
|
Please see www.github.com/kalray/kann-models-zoo for details and proper usage. </br> |
|
|
|
# Contents |
|
|
|
- ONNX: yolov9m.optimized.onnx |
|
|
|
# Lecture note reference |
|
|
|
|
|
# Repository or links references |
|
|
|
- repository: https://github.com/WongKinYiu/yolov9 |
|
- weights: https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-m-converted.pt |
|
|
|
|
|
BibTeX entry and citation info |
|
``` |
|
@article{wang2024yolov9, |
|
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information}, |
|
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark}, |
|
booktitle={arXiv preprint arXiv:2402.13616}, |
|
year={2024} |
|
} |
|
|
|
@article{chang2023yolor, |
|
title={{YOLOR}-Based Multi-Task Learning}, |
|
author={Chang, Hung-Shuo and Wang, Chien-Yao and Wang, Richard Robert and Chou, Gene and Liao, Hong-Yuan Mark}, |
|
journal={arXiv preprint arXiv:2309.16921}, |
|
year={2023} |
|
} |
|
``` |