About :

AlpaRA 7B, a model for medical dialogue understanding. Fine-tuned using the Alpaca configuration on a curated 5,000-instruction dataset capturing nuances in patient-doctor conversations. Use Parameter Efficient Fine Tuning (PEFT) and Low Rank Adaptation (LoRA), make this model efficient on consumer-grade GPUs.

How to Use :

Load the AlpaRA model

from peft import PeftModel
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

tokenizer = LlamaTokenizer.from_pretrained("yahma/llama-7b-hf")

model = LlamaForCausalLM.from_pretrained(
    "yahma/llama-7b-hf",
    load_in_8bit=True,
    device_map="auto"
)
model = PeftModel.from_pretrained(model, "KalbeDigitalLab/alpara-7b-peft")

Prompt Template :

Feel free to change the instruction

PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.


### Instruction:
"how to cure flu?"

### Response:"""

Evaluation

inputs = tokenizer(
    PROMPT,
    return_tensors="pt"
)
input_ids = inputs["input_ids"].cuda()

print("Generating...")
generation_output = model.generate(
    input_ids=input_ids,
    return_dict_in_generate=True,
    output_scores=True,
    max_new_tokens=512,
)
for s in generation_output.sequences:
    result = tokenizer.decode(s).split("### Response:")[1]
    print(result)
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KalbeDigitalLab/alpara-7b-peft

Base model

yahma/llama-7b-hf
Adapter
(13)
this model