RhetoriBERT / README.md
Corran's picture
Update README.md
e70cab1 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:35934
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
widget:
  - source_sentence: >-
      Stating purpose of the current research with reference to gaps or issues
      in the literature
    sentences:
      - >-
        During the 15-year study, 10% of the osseointegrated implants in the
        edentulous jaw showed signs of peri-implantitis, leading to their
        failure.
      - >-
        This paper provides an in-depth exploration of the qualitative case
        study methodology, addressing the lack of comprehensive guidance for
        novice researchers in this area.
      - >-
        As a novice researcher in management science, I have been drawn to the
        qualitative case study methodology due to its ability to provide rich,
        in-depth insights into complex real-world situations.
  - source_sentence: Indicating missing, weak, or contradictory evidence
    sentences:
      - >-
        This paper contributes to the literature on the financial system by
        examining the relationship between bank size, bank capital, and the bank
        lending channel using a unique dataset of US banks during the global
        financial crisis.
      - >-
        A total of 150 patients with a clinical diagnosis of osteoarthritis of
        the hip or knee, according to the American College of Rheumatology
        criteria, were included in the study.
      - >-
        Despite the widespread use of the WOMAC (Western Ontario and McMaster
        Universities Osteoarthritis Index) questionnaire in clinical practice
        and research, there is a lack of consensus regarding its responsiveness
        to antirheumatic drug therapy in patients with osteoarthritis of the hip
        or knee.
  - source_sentence: >-
      Establishing the importance of the topic for the world or society: time
      frame given
    sentences:
      - >-
        The Th/Hf ratios of the basaltic lavas from the British Tertiary
        Volcanic Province range from 4.2 to 5.5, as shown in Table 1.
      - >-
        The use of organometal halide perovskites as visible-light sensitizers
        for photovoltaic cells has gained significant attention in the
        optoelectronics community due to their promising photovoltaic
        performance and cost-effective fabrication since the late 2000s.
      - >-
        Table 1 summarizes the power conversion efficiencies (PCEs) and
        certifications of the best-performing perovskite solar cells reported in
        the literature.
  - source_sentence: Describing the research design and the methods used
    sentences:
      - >-
        This study aims to evaluate the efficacy and safety of preoperative
        radiotherapy followed by total mesorectal excision in the treatment of
        resectable rectal cancer.
      - >-
        TREE-PUZZLE's parallel computing implementation significantly reduces
        the time required for maximum likelihood phylogenetic analysis compared
        to traditional methods, supporting previous findings of the importance
        of parallelization in phylogenetics.
      - >-
        This study investigates the efficacy of preoperative radiotherapy
        followed by total mesorectal excision in the treatment of resectable
        rectal cancer.
  - source_sentence: 'Surveys and interviews: Introducing excerpts from interview data'
    sentences:
      - >-
        Previous research on international trade under the WTO regime has
        explored various approaches to understanding the uneven promotion of
        trade (Hoekstra & Kostecki, 2001; Cline, 2004, ...).
      - >-
        Through surveys and interviews, multiliterate teachers expressed a
        shared belief in the importance of fostering students' ability to
        navigate multiple discourse communities.
      - >-
        The authors employ a constructivist approach to learning, where students
        build knowledge through active engagement with multimedia texts and
        collaborative discussions.
datasets:
  - Corran/SciGenTriplets
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: sentence-transformers/static-retrieval-mrl-en-v1
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: SciGen Eval Set
          type: SciGen-Eval-Set
        metrics:
          - type: cosine_accuracy@1
            value: 0.9000445235975066
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9452359750667854
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9641585040071238
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9853072128227961
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9000445235975066
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3150786583555951
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19283170080142473
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0985307212822796
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9000445235975066
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9452359750667854
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9641585040071238
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9853072128227961
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.941495085912059
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9276217685055616
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9283906979180744
            name: Cosine Map@100

sentence-transformers/static-retrieval-mrl-en-v1

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the sci_gen_colbert_triplets dataset. It maps sentences from academic texts to a 768-dimensional dense vector space based on their rhetorical function (summarizing results, expressing limitations etc.) and can be used for functional textual similarity, limitations analysis, rhetorical function classification, clustering and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Corran/SciGenNomicEmbed")
# Run inference
sentences = [
    'Surveys and interviews: Introducing excerpts from interview data',
    "Through surveys and interviews, multiliterate teachers expressed a shared belief in the importance of fostering students' ability to navigate multiple discourse communities.",
    'The authors employ a constructivist approach to learning, where students build knowledge through active engagement with multimedia texts and collaborative discussions.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9
cosine_accuracy@3 0.9452
cosine_accuracy@5 0.9642
cosine_accuracy@10 0.9853
cosine_precision@1 0.9
cosine_precision@3 0.3151
cosine_precision@5 0.1928
cosine_precision@10 0.0985
cosine_recall@1 0.9
cosine_recall@3 0.9452
cosine_recall@5 0.9642
cosine_recall@10 0.9853
cosine_ndcg@10 0.9415
cosine_mrr@10 0.9276
cosine_map@100 0.9284

Training Details

Training Dataset

sci_gen_colbert_triplets

  • Dataset: sci_gen_colbert_triplets at 44071bd
  • Size: 35,934 training samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 5 tokens
    • mean: 10.24 tokens
    • max: 23 tokens
    • min: 2 tokens
    • mean: 39.86 tokens
    • max: 80 tokens
    • min: 18 tokens
    • mean: 40.41 tokens
    • max: 88 tokens
  • Samples:
    query positive negative
    Previous research: highlighting negative outcomes Despite the widespread use of seniority-based wage systems in labor contracts, previous research has highlighted their negative outcomes, such as inefficiencies and demotivating effects on workers. This paper, published in 1974, was among the first to establish the importance of rank-order tournaments as optimal labor contracts in microeconomics.
    Synthesising sources: contrasting evidence or ideas Despite the observed chronic enterocolitis in Interleukin-10-deficient mice, some studies suggest that this cytokine plays a protective role in intestinal inflammation in humans (Kurimoto et al., 2001). Chronic enterocolitis developed in Interleukin-10-deficient mice, characterized by inflammatory cell infiltration, epithelial damage, and increased production of pro-inflammatory cytokines.
    Previous research: Approaches taken Previous research on measuring patient-relevant outcomes in osteoarthritis has primarily relied on self-reported measures, such as the Western Ontario and McMaster Universities Arthritis Index (WOMAC) (Bellamy et al., 1988). The WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) questionnaire has been widely used in physical therapy research to assess the impact of antirheumatic drug therapy on patient-reported outcomes in individuals with hip or knee osteoarthritis.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

sci_gen_colbert_triplets

  • Dataset: sci_gen_colbert_triplets at 44071bd
  • Size: 4,492 evaluation samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 5 tokens
    • mean: 10.23 tokens
    • max: 23 tokens
    • min: 18 tokens
    • mean: 39.83 tokens
    • max: 84 tokens
    • min: 8 tokens
    • mean: 39.89 tokens
    • max: 84 tokens
  • Samples:
    query positive negative
    Providing background information: reference to the purpose of the study This study aimed to investigate the impact of socioeconomic status on child development, specifically focusing on cognitive, language, and social-emotional domains. Children from high socioeconomic status families showed significantly higher IQ scores (M = 112.5, SD = 5.6) compared to children from low socioeconomic status families (M = 104.3, SD = 6.2) in the verbal IQ subtest.
    Providing background information: reference to the literature According to previous studies using WinGX suite for small-molecule single-crystal crystallography, the optimization of crystal structures leads to improved accuracy in determining atomic coordinates. This paper describes the WinGX suite, a powerful tool for small-molecule single-crystal crystallography that significantly advances the field of crystallography by streamlining data collection and analysis.
    General comments on the relevant literature Polymer brushes have gained significant attention in the field of polymer science due to their unique properties, such as controlled thickness, high surface density, and tunable interfacial properties. Despite previous reports suggesting that polymer brushes with short grafting densities exhibit poorer performance in terms of adhesion and stability compared to those with higher grafting densities (Liu et al., 2010), our results indicate that the opposite is true for certain types of polymer brushes.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 256
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss SciGen-Eval-Set_cosine_ndcg@10
0 0 - - 0.1744
0.1418 20 31.1056 29.9614 0.2010
0.2837 40 28.3636 25.9021 0.3552
0.4255 60 23.8421 21.4941 0.4817
0.5674 80 20.2484 19.1669 0.5793
0.7092 100 18.6804 18.0565 0.6219
0.8511 120 17.7705 17.3231 0.6564
0.9929 140 17.1951 16.8645 0.6723
1.1348 160 16.1046 16.3714 0.6918
1.2766 180 16.0491 16.0427 0.7063
1.4184 200 15.4859 15.6624 0.7240
1.5603 220 15.3239 15.4609 0.7341
1.7021 240 14.9202 15.1556 0.7414
1.8440 260 14.7176 14.8438 0.7584
1.9858 280 14.5036 14.5248 0.7718
2.1277 300 12.8219 14.4285 0.7860
2.2695 320 12.9107 14.1397 0.7927
2.4113 340 12.6728 13.8471 0.8092
2.5532 360 12.4097 13.6623 0.8160
2.6950 380 12.3039 13.4078 0.8264
2.8369 400 12.121 13.1426 0.8382
2.9787 420 12.0307 12.7989 0.8520
3.1206 440 10.4306 12.7893 0.8566
3.2624 460 10.5238 12.7036 0.8681
3.4043 480 10.3648 12.5674 0.8783
3.5461 500 10.4774 12.3069 0.8794
3.6879 520 10.4965 12.0965 0.8837
3.8298 540 10.4085 12.0368 0.8868
3.9716 560 10.2881 11.9063 0.8946
4.1135 580 9.1967 11.9930 0.8970
4.2553 600 9.3798 11.8936 0.9047
4.3972 620 9.3375 11.7678 0.9118
4.5390 640 9.2483 11.7572 0.9078
4.6809 660 9.3736 11.6011 0.9174
4.8227 680 9.3427 11.5383 0.9197
4.9645 700 9.3935 11.4293 0.9242
5.1064 720 8.5631 11.5119 0.9294
5.2482 740 8.6057 11.5173 0.9255
5.3901 760 8.6059 11.5421 0.9263
5.5319 780 8.8488 11.3879 0.9304
5.6738 800 8.7855 11.3523 0.9320
5.8156 820 8.7525 11.2572 0.9331
5.9574 840 8.8674 11.1829 0.9329
6.0993 860 8.0564 11.3401 0.9367
6.2411 880 8.1608 11.3323 0.9370
6.3830 900 8.2702 11.3146 0.9370
6.5248 920 8.3711 11.2561 0.9372
6.6667 940 8.421 11.2558 0.9354
6.8085 960 8.4125 11.1738 0.9384
6.9504 980 8.42 11.0996 0.9415

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}