|
--- |
|
language: |
|
- ko |
|
- en |
|
license: apache-2.0 |
|
widget: |
|
- text: 'translate_ko2en: IBM 왓슨X는 AI 및 데이터 플랫폼이다. 신뢰할 수 있는 데이터, 속도, 거버넌스를 갖고 파운데이션 |
|
모델 및 머신 러닝 기능을 포함한 AI 모델을 학습시키고, 조정해, 조직 전체에서 활용하기 위한 전 과정을 아우르는 기술과 서비스를 제공한다.' |
|
example_title: KO2EN 1 |
|
- text: 'translate_ko2en: 이용자는 신뢰할 수 있고 개방된 환경에서 자신의 데이터에 대해 자체적인 AI를 구축하거나, 시장에 출시된 |
|
AI 모델을 정교하게 조정할 수 있다. 대규모로 활용하기 위한 도구 세트, 기술, 인프라 및 전문 컨설팅 서비스를 활용할 수 있다.' |
|
example_title: KO2EN 2 |
|
- text: 'translate_en2ko: The Seoul Metropolitan Government said Wednesday that it |
|
would develop an AI-based congestion monitoring system to provide better information |
|
to passengers about crowd density at each subway station.' |
|
example_title: EN2KO 1 |
|
- text: 'translate_en2ko: According to Seoul Metro, the operator of the subway service |
|
in Seoul, the new service will help analyze the real-time flow of passengers and |
|
crowd levels in subway compartments, improving operational efficiency.' |
|
example_title: EN2KO 2 |
|
pipeline_tag: translation |
|
base_model: KETI-AIR/long-ke-t5-base |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ko2en_bidirection |
|
|
|
This model is a fine-tuned version of [KETI-AIR/long-ke-t5-base](https://huggingface.co/KETI-AIR/long-ke-t5-base) on the csv_dataset.py dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6808 |
|
- Bleu: 52.2152 |
|
- Gen Len: 396.0215 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:----:|:-------:| |
|
| 0.5962 | 1.0 | 750093 | 0.6808 | 0.0 | 18.369 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 1.13.0 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |