Wav2Vec2-Large-XLSR-53-Swedish
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Swedish using the NST Swedish Dictation. When using this model, make sure that your speech input is sampled at 16kHz.
Note: We recommend using our newer model wav2vec2-large-voxrex-swedish for the best performance.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]").
processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the Swedish test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "sv-SE", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
model = Wav2Vec2ForCTC.from_pretrained("KBLab/wav2vec2-large-xlsr-53-swedish")
model.to("cuda")
chars_to_ignore_regex = '[,?.!\\-;:"“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]])))
WER: 14.298610% CER: 4.925294%
Training
First the XLSR model was further pre-trained for 50 epochs with a corpus consisting of 1000 hours spoken Swedish from various radio stations. Secondly NST Swedish Dictation was used for fine tuning as well as Common Voice. Lastly only Common Voice dataset was used for final finetuning. The Fairseq scripts were used.
- Downloads last month
- 29,049
Datasets used to train KBLab/wav2vec2-large-xlsr-53-swedish
Evaluation results
- Test WER on Common Voice sv-SEself-reported14.299
- Test CER on Common Voice sv-SEself-reported4.925