library_name: peft
license: afl-3.0
datasets:
- nickrosh/Evol-Instruct-Code-80k-v1
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
Framework versions
- PEFT 0.6.0.dev0
"""
Original file is located at https://colab.research.google.com/drive/1yH0ov1ZDpun6yGi19zE07jkF_EUMI1Bf
Code Credit: Hugging Face
**Dataset Credit: https://twitter.com/Dorialexander/status/1681671177696161794 **
Finetune Llama-2-7b on a Google colab
Welcome to this Google Colab notebook that shows how to fine-tune the recent code Llama-2-7b model on a single Google colab and turn it into a chatbot
We will leverage PEFT library from Hugging Face ecosystem, as well as QLoRA for more memory efficient finetuning
Setup
Run the cells below to setup and install the required libraries. For our experiment we will need accelerate
, peft
, transformers
, datasets
and TRL to leverage the recent SFTTrainer
. We will use bitsandbytes
to quantize the base model into 4bit. We will also install einops
as it is a requirement to load Falcon models.
"""
!pip install -q -U trl transformers accelerate git+https://github.com/huggingface/peft.git !pip install -q datasets bitsandbytes einops wandb
"""## Dataset
login huggingface """
import wandb
!wandb login
Initialize WandB
wandb_key=[""] wandb.init(project="", name="" )
login with API
from huggingface_hub import login login()
from datasets import load_dataset
#dataset_name = "timdettmers/openassistant-guanaco" ###Human ,.,,,,,, ###Assistant dataset_name = "nickrosh/Evol-Instruct-Code-80k-v1" #dataset_name = 'AlexanderDoria/novel17_test' #french novels dataset = load_dataset(dataset_name, split="train")
"""## Loading the model"""
import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer
#model_name = "TinyPixel/Llama-2-7B-bf16-sharded" #model_name = "abhinand/Llama-2-7B-bf16-sharded-512MB" model_name= "TinyPixel/CodeLlama-7B-Instruct-bf16-sharded" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, )
model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True ) model.config.use_cache = False
"""Let's also load the tokenizer below"""
inputs = tokenizer(text, return_tensors="pt", padding="max_length", max_length=max_seq_length, truncation=True).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token
from peft import LoraConfig, get_peft_model
lora_alpha = 16 lora_dropout = 0.1 lora_r = 64
peft_config = LoraConfig( lora_alpha=lora_alpha, lora_dropout=lora_dropout, r=lora_r, bias="none", task_type="CAUSAL_LM" )
"""## Loading the trainer
Here we will use the SFTTrainer
from TRL library that gives a wrapper around transformers Trainer
to easily fine-tune models on instruction based datasets using PEFT adapters. Let's first load the training arguments below.
"""
from transformers import TrainingArguments
output_dir = "./results" per_device_train_batch_size = 4 gradient_accumulation_steps = 4 optim = "paged_adamw_32bit" save_steps = 100 logging_steps = 10 learning_rate = 2e-4 max_grad_norm = 0.3 max_steps = 100 warmup_ratio = 0.03 lr_scheduler_type = "constant"
training_arguments = TrainingArguments( output_dir=output_dir, per_device_train_batch_size=per_device_train_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, optim=optim, save_steps=save_steps, logging_steps=logging_steps, learning_rate=learning_rate, fp16=True, max_grad_norm=max_grad_norm, max_steps=max_steps, warmup_ratio=warmup_ratio, group_by_length=True, lr_scheduler_type=lr_scheduler_type, )
"""Then finally pass everthing to the trainer"""
from trl import SFTTrainer
max_seq_length = 512
trainer = SFTTrainer( model=model, train_dataset=dataset, peft_config=peft_config, dataset_text_field="output", max_seq_length=max_seq_length, tokenizer=tokenizer, args=training_arguments, )
"""We will also pre-process the model by upcasting the layer norms in float 32 for more stable training"""
for name, module in trainer.model.named_modules(): if "norm" in name: module = module.to(torch.float32)
"""## Train the model
You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the __call__
method is faster than using a method to encode the text followed by a call to the pad
method to get a padded encoding.
Now let's train the model! Simply call trainer.train()
"""
trainer.train()
"""During training, the model should converge nicely as follows:
The SFTTrainer
also takes care of properly saving only the adapters during training instead of saving the entire model.
"""
model_to_save = trainer.model.module if hasattr(trainer.model, 'module') else trainer.model # Take care of distributed/parallel training model_to_save.save_pretrained("outputs")
lora_config = LoraConfig.from_pretrained('outputs') model = get_peft_model(model, lora_config)
dataset['output']
text = "make a advanced python script to finetune a llama2-7b-bf16-sharded model with accelerator and qlora" device = "cuda:0" inputs = tokenizer(text, return_tensors="pt", padding="max_length", max_length=max_seq_length, truncation=True).to(device) #inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=150) print(tokenizer.decode(outputs[0], skip_special_tokens=False))
model.push_to_hub("K00B404/CodeLlama-7B-Instruct-bf16-sharded-ft-v0_01", use_auth_token="<HUGGINGFACE_WRITE-api")