deberta-v3-large-reward-model
This model is a fine-tuned version of microsoft/deberta-v3-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0084
- Accuracy: 0.9975
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0336 | 2.0 | 100 | 0.0315 | 0.9975 |
0.0043 | 4.0 | 200 | 0.0105 | 0.9925 |
0.0006 | 6.0 | 300 | 0.0079 | 0.9975 |
0.0001 | 8.0 | 400 | 0.0086 | 0.9975 |
0.0002 | 10.0 | 500 | 0.0084 | 0.9975 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 13
Model tree for JustDoItNow/deberta-v3-large-reward-model
Base model
microsoft/deberta-v3-large