JulieHinge's picture
End of training
6646459 verified
metadata
library_name: transformers
language:
  - da
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - alexandrainst/ftspeech
metrics:
  - wer
model-index:
  - name: Whisper tiny FTSpeech - Julie
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ftspeech
          type: alexandrainst/ftspeech
          args: 'split: test'
        metrics:
          - name: Wer
            type: wer
            value: 97.17612214675995

Whisper tiny FTSpeech - Julie

This model is a fine-tuned version of openai/whisper-tiny on the ftspeech dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6006
  • Wer: 97.1761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9429 0.0080 500 0.9411 87.9967
0.7782 0.0161 1000 0.7891 91.5049
0.7176 0.0241 1500 0.7164 89.9351
0.6545 0.0321 2000 0.6686 85.8745
0.6171 0.0402 2500 0.6395 91.9062
0.5767 0.0482 3000 0.6176 94.2052
0.546 0.0562 3500 0.6006 97.1761

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.21.0