metadata
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: examplej.skops
widget:
structuredData:
'Unnamed: 32':
- .nan
- .nan
- .nan
area_mean:
- 481.9
- 1130
- 748.9
area_se:
- 30.29
- 96.05
- 48.31
area_worst:
- 677.9
- 1866
- 1156
compactness_mean:
- 0.1058
- 0.1029
- 0.1223
compactness_se:
- 0.01911
- 0.01652
- 0.01484
compactness_worst:
- 0.2378
- 0.2336
- 0.2394
concave points_mean:
- 0.03821
- 0.07951
- 0.08087
concave points_se:
- 0.01037
- 0.0137
- 0.01093
concave points_worst:
- 0.1015
- 0.1789
- 0.1514
concavity_mean:
- 0.08005
- 0.108
- 0.1466
concavity_se:
- 0.02701
- 0.02269
- 0.02813
concavity_worst:
- 0.2671
- 0.2687
- 0.3791
fractal_dimension_mean:
- 0.06373
- 0.05461
- 0.05796
fractal_dimension_se:
- 0.003586
- 0.001698
- 0.002461
fractal_dimension_worst:
- 0.0875
- 0.06589
- 0.08019
id:
- 87930
- 859575
- 8670
perimeter_mean:
- 81.09
- 123.6
- 101.7
perimeter_se:
- 2.497
- 5.486
- 3.094
perimeter_worst:
- 96.05
- 165.9
- 124.9
radius_mean:
- 12.47
- 18.94
- 15.46
radius_se:
- 0.3961
- 0.7888
- 0.4743
radius_worst:
- 14.97
- 24.86
- 19.26
smoothness_mean:
- 0.09965
- 0.09009
- 0.1092
smoothness_se:
- 0.006953
- 0.004444
- 0.00624
smoothness_worst:
- 0.1426
- 0.1193
- 0.1546
symmetry_mean:
- 0.1925
- 0.1582
- 0.1931
symmetry_se:
- 0.01782
- 0.01386
- 0.01397
symmetry_worst:
- 0.3014
- 0.2551
- 0.2837
texture_mean:
- 18.6
- 21.31
- 19.48
texture_se:
- 1.044
- 0.7975
- 0.7859
texture_worst:
- 24.64
- 26.58
- 26
Model description
[More Information Needed]
Intended uses & limitations
This model is not ready to be used in production (J).
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('imputer', SimpleImputer()), ('scaler', StandardScaler()), ('model', LogisticRegression())] |
verbose | False |
imputer | SimpleImputer() |
scaler | StandardScaler() |
model | LogisticRegression() |
imputer__add_indicator | False |
imputer__copy | True |
imputer__fill_value | |
imputer__keep_empty_features | False |
imputer__missing_values | nan |
imputer__strategy | mean |
imputer__verbose | deprecated |
scaler__copy | True |
scaler__with_mean | True |
scaler__with_std | True |
model__C | 1.0 |
model__class_weight | |
model__dual | False |
model__fit_intercept | True |
model__intercept_scaling | 1 |
model__l1_ratio | |
model__max_iter | 100 |
model__multi_class | auto |
model__n_jobs | |
model__penalty | l2 |
model__random_state | |
model__solver | lbfgs |
model__tol | 0.0001 |
model__verbose | 0 |
model__warm_start | False |
Model Plot
The model plot is below.
Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),('model', LogisticRegression())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('imputer', SimpleImputer()), ('scaler', StandardScaler()),('model', LogisticRegression())])
SimpleImputer()
StandardScaler()
LogisticRegression()
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]